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SUMMARY 

 The complexity and heterogeneity nature of cancer makes it difficult to 

successfully diagnose and treat cancer. Advances in cancer research have been focused 

on studying the molecular level of the disease, and nanotechnology plays a critical role in 

overcoming the obstacles in cancer biology. The size-scale (1-100nm) of nanotechnology 

provides a powerful tool to easily manipulate the cancer environment by distinctively 

size-tuning the nanomaterial to interact with biological molecules in tumor. 

Recently, gold nanoparticle has emerged as an attractive platform for drug 

delivery applications by complementing the existing drug delivery carriers. Gold 

nanoparticles confer several advantages such as biocompatibility, size-tunability, and 

easy surface modification methods. Furthermore, due to its unique optical properties, 

multiple analytical chemistry methods such as UV-vis spectrophotometry, SERS, TEM, 

ICP-MS, darkfield microscopy, fluorescence can be used. Currently, only a few gold 

nanoparticle-based anticancer drug delivery systems have been reported, compared to the 

polymer-based delivery systems. Additionally, there is still a lack of understanding for 

the behavior and fate of the gold-drug conjugate in the body that further attention is 

required. The overall goal of this thesis is to investigate the in vivo behavior of colloidal 

gold nanoparticle and its therapeutic efficacy in an animal model, especially in a drug 

delivery application.  To achieve this goal, we investigated the feasibility of using 

colloidal gold nanoparticle as an anticancer agent delivery vehicle for treatment of 

cancer. Then, long-term clearance, toxicity, and biodistribution of colloidal gold 

nanoparticle were studied to further aid in understanding of using colloidal gold 

nanoparticle as a drug delivery platform. In particular, two representative sizes of gold 

 xix
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nanoparticles, 5nm and 60nm, were investigated for the size effect on therapeutic 

efficacy, toxicity, biodistribution, and clearance in cancer nanotherapy. 

First, we report the development and characterization of multifunctional drug 

delivery system for simultaneously therapy and SERS spectroscopic detection of tumor. 

Doxorubicin, serving a dual function of chemotherapeutic agent and SERS reporter 

molecule, was chemically conjugated to 60nm gold nanoparticle via pH-sensitive 

hydrazone linker, and then PEG was added to develop multifunctional delivery system. 

The multifunctional delivery system demonstrated successful pH-dependent drug release 

profile, therapeutic effect on tumor cells, along with in vitro SERS spectroscopic 

detection. SERS spectra were detected for non-aggregated gold system at near-infrared 

wavelength. Thus, the development of multifunctional drug delivery system raises 

exciting opportunities for simultaneous spectroscopic detection and therapy for tumors.  

Then, we report development of smaller-sized 5nm gold nanoparticle drug 

delivery system. Similar to 60nm gold system, 5nm gold nanoparticles were coated with 

doxorubicin, which was modified with pH-sensitive hydrazone linker, and then with PEG 

to give colloidal stability and biocompatibility. When tested in a tumor mouse model, 

5nm gold drug delivery system resulted in therapeutic efficacy against tumor with no 

apparent systemic toxicity. In contrast, pure doxorubicin resulted in kidney, heart, and 

lung toxicity, along with insignificant therapeutic efficacy compared to other groups 

tested. The success of 5nm gold system resulted from (1) “high” accumulation at the 

tumor site compared to other non-tumor sites via EPR effect, (2) ideal spatial distribution 

and successful penetration at the tumor site, and (3) slow, controlled release of drug via 

pH-sensitive linker to result in no apparent systemic toxicity.  

 xx
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 Finally, we demonstrated the size-dependent biodistribution  and clearance of 

colloidal gold nanoparticles that (1) increased circulation time for 5nm gold system (due 

to size and PEG) resulted in biodistribution of gold in various organs compared to 60nm 

gold system, (2) larger 60nm gold system was mostly uptaken in the liver and the spleen, 

whereas smaller sized 5nm gold system was visible in the various organs in the system, 

especially resulting in pigmentation in the skin and the lymph nodes, and (3) size 

dependent clearance was observed where 5nm gold system gets excreted via renal (urine) 

and hepatobiliary (feces) pathways, whereas 60nm gold was mostly retained in the spleen 

and liver after 6 months. Thus, 5nm gold system is a potential candidate for biomedical 

applications, where 5nm gold core displays inherently different biodistribution and 

clearance characteristics than 60nm or larger nanoparticles.  

 In summary, we believe that nanoparticle size plays a critical role for not only 

delivering the drug to the target site but also determining the in vivo behavior such as 

biodistribution and clearance in the system. By choosing an appropriate size scale for the 

system, we were able to successfully use gold nanoparticles for drug delivery 

applications along with desirable clearance from the biological system. This work is 

significant by providing an insight on a potential ideal candidate for drug delivery carrier 

for cancer nanotherapy.  

 

 xxi
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CHAPTER 1 

CANCER AND NANOTECHNOLOGY  

 

1.1  ABSTRACT  

 Nanotechnology is an interdisciplinary research field that combines chemistry, 

engineering, biology, and medicine that allows early detection, accurate diagnosis, and 

personalized treatment of cancer. Nanotechnology adopts a size scale that is equivalent to 

biological molecules of 5-100 nm in diameter. The complexity and heterogeneity nature 

of cancer makes it difficult to successfully diagnose and treat cancer. Advances in cancer 

research have been focused on studying molecular level of the disease, and 

nanotechnology plays a critical role in overcoming the obstacles in cancer biology. In this 

chapter we will look at general characteristics of cancer and emphasizes the role of 

nanotechnology, particularly in terms of size effect, for successful detection, diagnosis, 

and treatment of cancer. 

1.2  INTRODUCTION 

 According to the American Cancer Society, cancer is defined as the following: 

“Cancer is a group of disease characterized by uncontrolled growth and 

spread of abnormal cells. If the spread is not controlled, it can result in 

death. Cancer is caused by both external factors (tobacco, infectious 

organisms, chemicals, and radiation) and internal factors (inherited 

mutations, hormones, immune conditions, and mutations that occur from 

metabolism). These causal factors may act together or in sequence to 

initiate or promote carcinogenesis.”   

 Cancer has been the second leading cause of death worldwide, following heart 

diseases [1]. Cases of cancer doubled globally between 1975 and 2000, will double again 

1 
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by 2020, and will nearly triple by 2030, according to the World Cancer Report by World 

Health Organization. There were an estimated 12 million new cancer diagnoses and more 

than 7 million deaths worldwide in 2009. The projected numbers for 2030 are 20 to 

26 million new diagnoses and 13 to 17 million deaths. Looking at the United States 

alone, approximately 1.5 million new cancer cases are expected to be diagnosed in 2010 

[2].  

Over the past 50 years, the death rate due to top mortality causes (heart diseases, 

cerebrovascular diseases, and pneumonia/influenza) has declined dramatically in the US 

[2]. However, despite the vast knowledge and efforts made over the past decade to fight 

cancer, relatively little progress has been made to reduce the cancer death rate. Thus, the 

rapid increase in the global cancer burden represents a real challenge for health systems 

worldwide. 

 

Table 1.1. Leading Causes of Death Worldwide in 2001 (thousands) [1] 
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Figure 1.1. Comparison of Death Rates for Top Four Leading Causes of Mortality in the 

United States [2]  

 

 As seen in Figure 1.1, compared to the peak rate of 215.1 per 100,000 in 1991, the 

cancer death rate decreased 17% to 178.4 in 2007. Rates for other major chronic diseases 

decreased substantially during this period.  

The complexity and heterogeneity nature of cancer makes it difficult to 

successfully diagnose and treat cancer. Advances in cancer research have been focused 

on studying molecular level of the disease, and “nanotechnology” plays a critical role in 

overcoming the obstacles in cancer biology. Nanotechnology is an interdisciplinary 

research field that combines chemistry, engineering, biology, and medicine that allows 

early detection, accurate diagnosis, and personalized treatment of cancer [3]. 

Nanotechnology adopts a size scale that is equivalent to biological molecules (i.e protein, 

DNA, etc.) of 5-100 nm in diameter. Due to its small size, nanoparticle improves the 

 3
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availability of particular agent by increasing its interactions with biomolecules both 

inside and outside surface of the cells. The most well-studied nanoparticles include 

quantum dots [4-7], iron oxide [8-11], polymer-based nanoparticles [12-14], carbon 

nanotube [15], gold nanoparticle [16-19], and many others [20].   

One of the most extensively studied subjects in nanotechnology is “size”. In 

particular, the relationship between size and various aspects such as tumor accumulation/ 

targeting, cellular uptake, toxicity, biodistribution, and clearance has been the major 

focus for successful application of nanoparticles in detection, diagnosis, and treatment of 

cancer.  In this chapter, we will closely look at the general characteristics of cancer and 

the role of nanotechnology in cancer biology, especially focusing on the “size effect”.   

1.3  CHARACTERISTICS OF CANCER 

 Research over the past decades have revealed that tumorigenesis in humans is a 

multi-step process that results in dynamic changes in the genome. The transformation of 

normal cells to malignant cells is an extremely complicated process that brings 

heterogeneity in cancer cells. To make the matter more complex, more than 100 

distinctive types of human cancer have been identified, and multiple subtypes of tumors 

are found within a specific type of cancer. However, it has been reported that most and 

possibly all types of human cancer share common traits that are acquired during tumor 

development: 1) self-sufficiency in growth signals, 2) insensitivity to anti-growth signals, 

3) evasion of programmed cell death or apoptosis, 4) limitless replicative potential, 5) 

sustained angiogenesis, 6) tissue invasion and metastasis [21].  

 Normal cells heavily depend on growth factors and signals from its environment 

to control proliferation. However, tumor cells provide their own growth factors and 

proliferate independently from external growth signals. Furthermore, tumor cells display 

 4
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abnormal cell growth by disrupting the anti-growth signal pathway to result in 

uncontrollable growth.  

 

 

 

 

Figure 1.2. Six Acquired Traits of Human Cancer [21]  

 

 Apoptosis is body’s defense mechanism where diseased cells are removed from 

the system through programmed cell death. Tumor cells avoid apoptosis by altering the 

cellular pathway for programmed cell death, which allows them to grow without any 

restriction or confinement. As the tumor cells proliferate, they provide their own nutrients 

via creating their own network of blood vessels to access oxygen and other required 

nutrients. Finally, tumor cells invade adjacent tissues and travel distant sites where 

nutrients and space is not limited initially. It is this metastasis of tumor cells that results 

in 90% of human cancer deaths.  

 5
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1.4  ENHANCED PERMEABILITY AND RETENTION (EPR) EFFECT 

 Tumor vasculature is characterized as “leaky” due to its irregular-shaped, dilated, 

disorganized, and poorly-aligned endothelial cells [22-24]. Additionally, poor lymphatic 

drainage results in leakage of plasma components from the circulation into the interstitial 

space of the tumor. This phenomenon, originally described by Matsumura and Maeda, is 

called enhanced permeability and retention (EPR) effect [25].  

 As seen in Figure 1.3, normal, healthy vasculature displays continuous 

morphology where pores are 2-6 nm in size [26]. Tumor vasculature has larger pores than 

the normal vessels that size ranges from 100 to 2000 nm [27-29]. Increased cutoff pore 

size for tumor vasculature allows increased permeability of plasma proteins for tumor and 

lack of functional lymphatic vessels within tumor decreases the rate of clearance.  

The EPR effect now has become the “gold standard” in anticancer drug delivery 

that takes advantage of the unique anatomical-pathophysiological nature of the tumor 

blood vessels. The EPR effect is a molecular weight dependent phenomenon that only 

occurs in the tumor tissue. Particles larger than 40 kDa selectively leak out from the 

tumor vessel to accumulate in the tumor tissue. The increased accumulation of >40 kDa 

are due to prolonged circulation time and decreased clearance rate from the body. In 

attempt to prolong the drug residence time and selectively trap the nanoparticle in the 

tumor cells, biocompatible poly (ethylene glycol) is commonly used to prevent rapid 

clearance of the nanoparticle by the reticuloendothelial system.  
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a) 

 

 

 

b) 

 

 

Figure 1.3. Normal and Tumor Vasculature. a) Normal vessels are aligned in parallel to 
one another (A), whereas tumor vessels have chaotic morphology with uneven diameters 
[23]; b) SEM images of normal blood vessels of pancreas (A), colon (B), and liver (C) 
compared to tumor vessels of liver (D, metastatic tumor nodule marked as “T” and 
normal liver tissue marked as “N”), tumor nodule (E), and empty void in tumor vascular 
bed (F) [24] 
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1.5  SIZE EFFECT 

 Various nanoparticles such as semiconductor quantum dots, iron oxide, polymer-

based nanoparticles, and gold nanoparticles are present for in vitro and in vivo 

applications in nano-diagnostics and nano-therapy. Quantum dots are approximately 2-9 

nm in size and are widely used in cell-tracking, solution-based detection, and in vivo 

imaging in whole animals [4, 7, 30]. Quantum dots display unique physical and chemical 

properties of narrow emission peaks, high photostability and brightness, broad absorption 

peaks, and size-tunable emission wavelengths throughout visible and infrared spectrum 

[30]. Paramagnetic iron oxides are widely used in vivo MRI contrast imaging agent [8, 9, 

11, 31] and is also used as a carrier for targeted delivery of anticancer agent [32]. 

Polymer-based nanoparticles are commonly used for drug delivery applications and can 

be synthesized in various shapes and sizes that can carry multiple agents to the diseased 

cells [12-14]. Some of the polymer-based nanoparticles, such as PLGA-PEG, are 

biodegradable that can be cleared out from the body after the application over time [33]. 

Finally, gold nanoparticles are widely used for chemical sensing such as surface-

enhanced Raman scattering (SERS), photo-thermal therapy, dark-field optical 

microscopy, and drug delivery applications due to its unique optical properties [34].  

 All of the above quantum dots, iron oxide, polymer-based nanoparticle, and gold 

nanoparticles can be synthesized in various sizes for biological applications. Not only 

each type of nanoparticle has unique chemical and physical characteristics but different 

sizes within each type of nanoparticle also results in unique property. Thus, size becomes 

an important factor for successful applications of these nanoparticles in cancer 

nanotechnology. 

Size Effect on Tumor Targeting and Accumulation 

 Solid tumors are characterized by defective vascular architecture and impaired 

lymphatic drainage/ recovery system that lead to enhanced permeability and retention 
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(EPR) effect [35].  The key mechanism to this phenomenon is the retention of the 

macromolecules (MW > 40KDa, which is renal clearance cutoff) in solid tumors, where 

low-molecular weight particles are returned (instead of getting retained) back into the 

blood circulation by diffusion [36]. Many nanoparticle systems take advantage of EPR 

effect to increase the bioavailability of the delivered agent for successful cancer detection 

and treatment.  

 Recently, Perrault and coworkers have tested wide size ranges of gold 

nanoparticles (10-100nm) and found that accumulation of 40−100 nm particles is 

exclusively dependent on blood half-life, whereas the accumulation of particles in the 20 

nm range depends on size and half-life [37]. They concluded that particles with 

hydrodynamic diameter of 60-100 nm with PEGylation (5 or 10kDa) would provide 

excellent candidate to utilized EPR effect for increased tumor accumulation. However, 

Perrault et al. found that larger particles (60-100nm) permeated less into the tumor and 

localized in the perivascular region. For 20nm particles, they permeated far from the 

vessel centers and may have cleared into the surrounding tissues that led to lower degree 

of accumulation.  

 Similarly, Dreher and coworkers used dextrans to study the tumor vascular 

permeability and accumulation of drug carriers [23]. They found that tumor accumulation 

increased with larger molecular weight dextrans (40−70 kDa or 11.2−14.6 nm). They 

accounted poor accumulation of low molecular weight dextrans (3.3-10kDa) is due to the 

increased permeation of rate and clearance of dextrans into interstitial space. 

Thus, EPR effect is very sensitive to size and appropriate size needs to be selected for the 

successful accumulation and permeation of nanoparticle in solid tumor.   

Size Effect on Cellular Uptake 

 Many studies in the past have demonstrated that size plays a critical role in 

cellular uptake of various nanoparticles such as liposomes, polymer nanoparticles, DNA-
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coated glycocluster nanoparticles, and inorganic nanostructures [38-42]. Compared to 

other sizes (range of 14-100 nm), Chithrani et al. found that nanoparticles with a diameter 

of approximately 50nm were taken up by cells at a higher concentration with a faster rate. 

Particularly, Osaki et al. showed that 50nm quantum dot nanoparticles entered the cell 

more efficiently than smaller nanoparticles via receptor-mediated endocytosis.   

 Within the same size, additional factors such as surface charge can complicate the 

cellular uptake process of nanoparticles [38, 41-44]. Generally, cationic particles tend to 

bind to the cell surface more efficiently than the anionic particles due to electrostatic 

attraction to the negatively charged cellular membrane. Surface charge of the 

nanoparticle can be easily modified with various coatings. However, surface coatings 

with thiolated PEG (MW 1500) can increase the nanoparticle diameter up to ~6nm [38], 

which affects the overall size of the nanoparticle for cellular uptake.  

Size Effect on Nanoparticle Toxicity 

 A concern for nanomaterial toxicity arises as the physical and chemical properties 

of the material changes dramatically at a nanoscopic scale. Various sizes of nanoparticles, 

especially gold nanoparticles, have been frequently been in the focus of interest for 

testing nanotoxicity. It has been reported that gold nanoparticles or clusters as small as 

1.4nm in diameter lead to unusual cytotoxicity, where 1.4nm particles strongly interact 

with the major grooves of the DNA [45]. Similarly, Pan et al. found that 1.4 nm gold 

particles predominantly cause necrosis while 1.2nm gold particles mainly cause apoptosis 

in connective tissue fibroblast, epithelial cells, macrophage, and melanoma cells [46]. For 

a given concentration, Pan et al. reported that 15nm gold nanoparticle did not show 

toxicity compared to 1.4 nm gold particles.  
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Connor et al. reports gold nanoparticles with 4nm, 12nm, and 18nm in diameters 

did not display toxicity towards human leukemia cell lines [47]. Furthermore, Shukla et 

al. reported lysine and poly-lysine capped 35 ± 7 Å gold nanoparticle lacked toxicity 

towards macrophages but reactive oxygen and nitride species were observed [48]. 

Finally, 50nm gold nanoparticles were uptaken by HeLa cells without any toxicity [38]. 

Thus, for a given nanomaterial (gold in this case), size plays a critical role in exerting 

toxicity to cells. 

Size Effect on Nanoparticle Biodistibution 

The unique physico-chemical properties of nanoscale particles results in an 

increased reactivity with the biological systems that it renders different effects in the 

system compared to the larger, bulk materials. It is important to know the distribution and 

the effects of absorbed nanoparticle in various organs after an exposure. Generally, 

nanoparticles with size less than 10nm get distributed throughout the system, whereas 

larger particles like ~60nm is mostly confined to the liver and spleen after intravenous 

injection [49]. Furthermore, in detailed studies on various nanoparticle size and its 

distribution confirm that majority of nanoparticles accumulated in the “liver” and 

“spleen” regardless of size (1.9nm~250nm), shape (sphere or rod), type (carbon 

nanotube, quantum dots, iron oxide, gold nanoparticle), and dose of exposure (0.01~2700 

mg/kg) after intravenous injection [18, 49-62].  
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Table 1.2. Biodistribution of Various Size, Shape, and Dosage of Gold Nanoparticles 
[52]  
 

 

 
 

Size Effect on Nanoparticle Clearance 

After delivering imaging or therapeutic agent with a nanocarrier to the target site, 

it is desirable to see the delivery vehicle to clear out from the body, minimizing any harm 

to the healthy, normal cells. It has been reported that larger particles such as 20nm gold 

nanoparticle is minimally excreted through feces and urine that there is a significant and 

persistent accumulation of gold nanoparticle in the liver and spleen through intravenous 

exposure [52]. Similarly, metal-based 13nm quantum dot showed accumulation in kidney 

but there was no urinary excretion up to 28 days after the injection in mice [63]. 

Recently, Perrault and coworkers found that PEGylated 20nm gold nanoparticle cleared 

out rapidly from the blood without corresponding accumulation in the spleen and liver. 

Also, 40nm gold nanoparticle was removed from the circulation primarily by Kupffer 
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cells in the liver and remained as clusters even after six months [58]. In contrast, particles 

with less than ~6nm (MW ~50,000) in diameter displayed clearance from the system. For 

example, 77% of the injected 1.9nm gold nanoparticle was rapidly cleared through the 

kidney and excreted 5 hours after the intravenous injection in the mouse [56]. Similarly, 

Choi et al showed rapid clearance of zwitterionic coated quantum dots (4.36-5.52nm) 

through kidney and urinary excretion within 4 hours after the intravenous injection [64]. 

Based on these findings, we believe that nanoparticle “size” plays a critical role for not 

only delivering the imaging or therapeutic agents to the target site but also determining 

the in vivo behavior such as clearance of the nanoparticle in the body.  

Search for an Ideal Nanoparticle Size for Various Applications in Cancer 

Nanotechnology 

 Due to the complex nature of nanostructures, conflicting studies have led different 

views on various sizes of nanoparticles. Despite all the efforts in finding the optimal size 

to satisfy each category (relationship between size and 1) tumor accumulation, 2) cellular 

uptake, 3) toxicity, 4) biodistribution, and 5) clearance) listed above, there has not been a 

complete study that looks into a size that satisfies the majority of the categories at once. 

To make the matter worse, most of the studies conducted for each category were under in 

vitro conditions, which do not reflect the complexity of in vivo conditions.  

 To detect, diagnose, and treat cancer, one needs to be well aware of the unique 

cancer environment. It is the size-scale of nanotechnology that provides a powerful tool 

to easily manipulate the complex cancer environment by distinctively size-tuning the 

nanomaterial to interact with biological molecules in tumor. Furthermore, increased 

surface-to volume ratio in nanoparticles allows attaching various agents to further 

strengthen the unique properties of each nanomaterial. 
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 Here, biocompatible and inert nanomaterial, gold nanoparticle, will be chosen as a 

model system to test the size effect in vivo. Gold nanoparticles have been widely used in 

cell imaging [65, 66], targeted drug delivery [67], and cancer diagnostics and therapeutic 

applications [16, 68-70]. Furthermore, gold nanoparticle is an appropriate candidate for 

our study since various sizes (and shapes) can be easily synthesized. Since gold is not an 

intrinsic element in biological system, it is easily characterized by various analytical 

chemistry techniques such as UV-absorption spectroscopy, SERS, ICP-MS, TEM, dark-

field microscopy, etc. Thus, gold nanoparticle seems to be a logical choice to represent 

nanoparticles used in biomedical applications. In particular, we will focus on PEGylated 

small-sized gold nanoparticle (5nm) system in order to establish a universal size scheme 

that could be applied to satisfy tumor accumulation, cellular uptake, toxicity, 

biodistribution, and clearance issues simultaneously in biomedical application.  

1.6  DISSERTATION STRUCTURE 

 This dissertation focuses on the size effect in cancer nanotechnology, particularly 

focusing on the smaller-sized nanoparticle (5nm) that can be applied universally for 

various applications to detect, diagnose, and treat cancer. Gold nanoparticle will be used 

as a model system to test the size effect, comparing the smaller-sized gold nanoparticle 

(5nm) with the larger nanoparticle (60nm) in vivo. Each chapter will discuss the details 

and results for the development and applications of gold nanoparticle in cancer 

nanotechnology. The following briefly summarizes each chapter. 

 Chapter 1 – This chapter looks at the general characteristics of cancer and 

emphasizes the role of nanotechnology, particularly in terms of size effect, for successful 

detection, diagnosis, and treatment of cancer. 

 Chapter 2 – This chapter focuses on the general background for gold 

nanoparticles, which is used as a model nanoparticle system for the thesis.  
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 Chapter 3 – This chapter looks at design and development of a multifunctional 

drug delivery system that consist of large (60nm) gold nanoparticle system. The 

limitation seen in 60nm gold nanoparticle will set the motivation to look into smaller-

sized gold nanoparticle for cancer nanotechnology. 

 Chapter 4 – We discuss using smaller-sized gold nanoparticle (5nm) to overcome 

short-comings of larger-sized gold nanoparticle in drug delivery application. The study 

focuses on treatment of breast cancer in mice model and looks at the effectiveness of the 

small-sized gold nanoparticle system and its toxicity (if any). 

 Chapter 5 – Here, we use mice model to investigate the unique characteristics of 

small-sized gold nanoparticle (5nm) compared to larger-sized gold nanoparticle (60nm) 

in terms of biodistibution and clearance. The results from this chapter suggest “5nm” as a 

potential universal size candidate that can be used successfully for various applications in 

cancer nanotechnology.  

 Chapter 6 – Finally, we present several suggestions for further development of 

the system discussed in this dissertation as well as future directions of cancer 

nanotechnology in general.  

1.7  CONCLUSION 

 The complexity and heterogeneity nature of cancer makes it difficult to 

successfully diagnose and treat cancer. Advances in cancer research have been focused 

on studying molecular level of the disease, and nanotechnology plays a critical role in 

overcoming the obstacles in cancer biology. It is the size-scale of nanotechnology that 

provides a powerful tool to easily manipulate the complex cancer environment by 

distinctively size-tuning the nanomaterial to interact with the biological molecules in 

tumor. In particular, the relationship between size and various aspects such as tumor 

accumulation/ targeting, cellular uptake, toxicity, biodistribution, and clearance has been 

the major focus for successful application of nanoparticles in detection, diagnosis, and 
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treatment of cancer.  Thus, searching for the optimal size that can be universally applied 

for various applications in cancer nanotechnology will be useful. We will focus on using 

biocompatible, inert gold nanoparticle as a model system to find that “universal size” in 

this thesis.  
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CHAPTER 2 

BIOMEDICAL APPLICATIONS OF GOLD NANOPARTICLES 

IN CANCER NANOTECHNOLOY 

 

2.1  ABSTRACT  

 Gold nanoparticles are widely used in biomedical applications such as imaging, 

diagnostics, targeted drug delivery, and photo-thermal therapeutic applications. Due to its 

unique optical properties, multiple analytical chemistry methods such as UV-vis 

spectrophotometry, SERS, TEM, ICP-MS, darkfield microscopy, fluorescence exist. 

Also, gold nanoparticle renders several advantages of size-shape tunability, 

biocompatibility, and easy surface modification method that are useful for studying size 

effect in biomedical applications. Here, we will closely look at the general background 

and characteristics of gold nanoparticle and the rational behind choosing gold 

nanoparticle as a model system for studying size effect in cancer nanotechnology. 

2.2  INTRODUCTION 

Gold nanoparticles have a long history of medical usage. Red colloidal gold has 

been used by the Chinese since 2500 B.C. as a drug for longevity [71], whereas colloidal 

gold has been used for rejuvenation medicine in India [72]. Furthermore, colloidal gold 

has been used to treat rheumatoid arthritis for half a century [73, 74]. Colloidal gold also 

has ornamental usage that red colloidal gold was widely used in stained glasses during 

medieval period [75, 76]. 

Currently, gold nanoparticles are widely used in industrial and biomedical 

applications. For biomedical applications, a lot of the effort has been dedicated to 

“chemical sensing” such as SERS or particle aggregation sensing (Figure 2.1). The 
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unique optical property of gold nanoparticle allows “tracking” and imaging via dark field 

optical microscopy or two-photon luminescence microscopy for diagnostic purposes [34]. 

For therapeutic application, gold nanoparticle has been mainly used for “photothermal 

therapy”, where irradiated gold nanoparticle releases heat to their local environment for 

destruction of cancer cells or tumor tissue [16, 77, 78]. Using small gold nanoparticle as a 

drug carrier in “drug delivery” is recent that further attention and study is required [20]. 

In this chapter, we will closely look at the physical and chemical characteristics of 

gold nanoparticle and the rational behind choosing gold nanoparticle as a model system 

to study the size effect for this thesis.  

 
 

 
 

 
Figure 2.1. Pie Chart Depicting Different Biomedical Applications of Colloidal Gold: pie 
slices roughly estimate the proportions of collidal gold applications in four representative 
fields [34] 
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2.3  CHARACTERISTICS OF GOLD NANOPARTICLE 

New properties are introduced when the material is reduced to a nanometer size 

scale. In particular, the nanometer size scale brings dramatic changes in the electronic 

and chemical properties of the material as seen in semiconductor quantum dots and gold 

nanoparticles [79, 80]. Furthermore, the surface-to-volume ratio becomes larger as the 

size is reduced that the surface dominates the particle and brings new properties to the 

material. Gold nanoparticles confer several attractive physical and chemical properties. 

Due to its unique optical property arising from surface plasmon absorption and scattering 

of light from the surface, various characterization methods are available for biomedical 

applications.  

Surface Plasmon Absorption of Gold Nanoparticle 

 For noble metals such as gold, decrease in size below the electron mean free path 

(i.e. the distance the electron travels between scattering collisions with the lattice centers) 

leads to intense absorption in the visible-near UV wavelength [81]. This phenomenon or 

“surface plasmon absorption” is a result of the coherent oscillation of the free conduction 

band electrons from one surface of the particle to the other, which interact with an 

electromagnetic field [82]. As seen in Figure 2.2, the electric field of an incoming light 

wave induces a polarization of the electrons with respect to the much heavier ionic core 

of a spherical nanoparticle where net charge difference is only found at the surface of the 

nanoparticle [83]. 
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Figure 2.2. Classical Illustration of the Excitation of the Dipole Surface Plasmon 
Oscillation for Spherical Nanoparticle [80]  
 

 

The brilliant colors observed in gold colloidal solutions (Figure 2.3) are the 

consequence of surface plasmon absorption where strong absorption induced strong 

coupling of the nanoparticles to the electromagnetic radiation of light. In other words, 

when the frequency of the electromagnetic field becomes resonant with the coherent 

election motion, a strong absorption in the spectrum is observed. The size, shape, 

dielectric constant of the metal nanoparticles as well as the dielectric constant of the 

medium surroundings affect the frequency and the width of the surface plasmon 

absorption. 
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a)        b) 

        

 

Figure 2.3 Surface Plasmon Absorption seen in Spherical Gold Colloidal Solution (a) 
Various colors are visible due to surface plasmon absorption of different size gold 
colloids (b) Typical surface plasmon absorption spectrum of spherical nanoparticle that 
absorption peak is around ~532nm for deep pink color solution of 60nm spherical gold 
nanoparticle. 
 

 In 1908, Mie was the first person to theoretically explain the surface plasmon 

resonance of small spherical metal particles [84]. Mie solved the Maxwell’s equation for 

an electromagnetic light wave interacting with a small sphere having the same 

macroscopic, frequency-dependent material dielectric constant as the bulk metal. For 

particles < 20nm, Mie theory explains that the dipole oscillation contributes significantly 

to the extinction cross section. Mie’s theory is expressed as the following: 

 

                    EQN 2-1 

 

 

 21



www.manaraa.com

Where V is the particle volume, ω is the angular frequency of the exciting light, and c is 

the speed of light. εm and ε(ω)= ε1(ω) + iε2(ω) are the dielectric functions of the 

surrounding medium and the metal, respectively. For the metal, the dielectric function is 

complex and depends on the frequency. The resonance condition is fulfilled roughly 

when ε1(ω)=-2 εm  if ε2 is small or weakly dependent on ω [85].  

For larger particles (>20nm), the absorption spectrum is combination of 

absorption and scattering modes. Higher order modes become more dominant with 

increasing particle size, causing the plasmon absorption band to red shift and resulting in 

increased bandwidth. Thus, the optical absorption spectra depend directly on the size of 

the nanoparticle (i.e. extrinsic size effect).   

 

Surface Plasmon Light Scattering of Gold Nanoparticle 

Gold nanoparticles have the ability to resonantly scatter visible and near-infrared 

light upon the excitation of their surface plasmon oscillation. The scattering light 

intensity is extremely sensitive to the size, shape, and aggregation state of the particles 

that determines the wavelength distribution of the light [86, 87]. Gold nanoparticles 

scatter light of many colors when illuminated with white light at appropriate angles that 

this color scattering property offers the potential for labeling studies. 

It has been reported that the optical properties of nanoparticle (i.e. the optical 

resonance wavelength, the extinction cross-section, and the relative contribution of 

scattering to the extinction) are strongly dependent on the nanoparticle dimensions, 

allowing tunability for specific applications [88]. The increase in the nanoparticle size 
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results in an increase in the extinction as well as the relative contribution of scattering. 

This phenomenon is also described by Yguerabide et al. by the following equation [86]. 

 

    EQN 2-2 

 

Where Csca is light scattering cross section, a is particle radius, nmed is the refractive index 

of the medium surrounding the particle, m is the relative refractive index of the bulk 

particle material, and λ0 is the wavelength of the incident beam.  

 As seen in Equation 2-2, the scattering cross-section increases by 6 power of the 

particle radius in which increase in particle radius results in higher cross-section for 

stronger light scattering. Furthermore, gold nanoparticles provide high-scattering cross-

section compared to the conventionally used fluorescent dyes by 4-5 orders in magnitude 

[88]. Thus, surface plasmon oscillation of electrons of the gold nanoparticle result in 

strongly enhanced scattering that is useful for various biomedical applications.  

Advantages in Using Gold Nanoparticle  

Size and Shape Tunability  

Gold nanoparticles are easily synthesized in various shapes and sizes that it 

confers size and shape tunability[89]. In general, metal salts are reduced by reducing 

agents in a controlled manner to produce spherical nanoparticles. The ratio between the 

metal salt and the reducing agent determine the size of the nanoparticle. Some of the 

frequently used methods to synthesize spherical gold nanoparticles are 1) the Turkevich 

 23



www.manaraa.com

method (1951) that reduces the gold chloride by citrate in boiling water, 2) the related 

Frens method (1973), 3) the Brust method (1994) for smaller (~2nm) gold nanoparticles, 

where aqueous gold ion solution is transferred to an organic phase, mediated by phase 

transfer agent, followed by reduction with borohydride, 4) microemulsion method, and 5) 

seeding method in which gold seed particles are used to grow more gold in the presence 

of of a weak reducing agent [90]. Spherical shapes are the easiest to synthesize since 

spheres are the lowest-energy shape. 

Gold nanorods are synthesized in various methods such as seed-mediated growth 

methods [81, 85]. Nanoshells are synthesized by having spherical dielectric nanoparticle 

(i.e. silica nanoparticle) surrounded by an ultrathin, conductive, metallic layer (i.e. gold) 

[68]. Most recently, Xia group of the University of Washington have created gold 

nanocages sizes ranging from 10 to 150nm, which are porous gold nanoparticles. Gold 

nanocages are created by reacting silver nanoparticles with chloroauric acid in boiling 

water [91]. 
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Figure 2.4. TEM Images of Various Shapes and Sizes of Gold Nanoparticles: a-d 
represent spherical gold nanoparticle, f-k represent gold nanrods, l represents gold 
nanocage, and m represent gold nanoshells [a-j: [34]; l: [91]; m: [92]]. 
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Biocompatibility 

Gold nanoparticles are inert and have low in vivo toxicity compared to the other metallic 

materials [93, 94]. Several groups have examined the cellular toxicity of gold 

nanoparticles (Table 2.1). It was found that gold nanoparticles show little or no 

cytotoxicity in several studies. The biocompatibility of gold nanoparticle suggests that 

biological effect of gold nanoparticle is unlikely due to the intrinsic toxicity of the metal.  

Table 2.1. Summary of Selected Cytotoxicity for Gold Nanoparticles [34]  

 

 

Easy Detection by Using Various Analytical Methods 

Ultraviolet-Visible Spectroscopy 

The absorption spectra for spherical nanoparticle depend directly on the size of 

the nanoparticle (i.e. extrinsic size effect) due to the surface plasmon resonance [95]. 

Particularly for gold nanoparticles, they have a strong visible-light plasmon resonance 
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that Ultraviolet-Visible (UV-Vis) Spectroscopy is useful for characterization.  As the 

particle size gets larger, we can observe red shift and increase in bandwidth in the 

absorption spectra obtained from the UV-Vis Spectroscopy (Figure 2.5).  Red shift 

(and/or broadening of the bandwidth of the absorption peak) is also observed when the 

nanoparticle is coated with different ligands or aggregation occurs within the gold 

nanoparticles in the solution. Thus, UV-Vis Spectroscopy is also useful to check the 

stability of the colloidal gold in solution. 

 

 

Figure 2.5. Increase in Particle size results in red shift and increased bandwidth in 
absorption spectra [85]  
 
 

The Beer-Lambert law can be used to calculate the concentration of the solution.  

 

          EQN 2-3 

 

Where A is the measures absorbance, I0 is the intensity of the incident light at a given 

wavelength, I is the transmitted intensity, L the pathlength through the sample, c is the 
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concentration of the absorbing species, and ε is a constant known as molar absorptivity or 

extinction coefficient. 

The Beer-Lambert law states that the absorbance of the solution is directly 

proportional to the concentration of the absorbing species and the path length. Thus, for a 

fixed path length with known extinction coefficient, UV-Vis Spectroscopy can be used to 

determine the concentration of the absorbing species in the solution. 

Darkfield Light-Scattering Imaging 

 Colloidal gold nanoparticle has become an important alternative as imaging 

agents due to their biocompatibility and nonsusceptibility to photo-bleaching or 

chemical/thermal denaturation, a common problem observed with organic dyes [96]. 

Recently, El-Sayed et al. demonstrated differentiation of cancerous cells from healthy 

cells by darkfield light –scattering imaging with 35nm gold nanoparticle [97].  

 

            

Figure 2.6 Darkfield Light-Scattering Images of HSC Cancer Cell: HSC cancerous cells 
without (left column) gold nanoparticles and HSC cancerous cells with (right column) 
gold nanoparticles that scatter light to display bright yellow glow (scale bar: 10 μm) [97]  
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 Darkfield light-scattering imaging utilizes microscopy techniques. The darkfield 

imaging microscopy requires a condenser that has numerical aperture higher than the 

objective. The condenser delivers a very narrow beam of white light from the light 

source. Then the objective collects the only scattered light (not transmitted light from the 

samples) that the center of the illuminating beam is blocked from the entering light 

collection cone of the microscope objective and only the scattered light of the side beam 

is collected.  As a result, a bright image with a dark background is created (Figure 2.7).  

 

Figure 2.7. Diagram of Darkfield Light-Scattering Microscopy Setup 

A high-scattering cross-section is essential for imaging applications based on 

darkfield light-scattering microscopy. Gold nanoparticles provide cross-sections of 4-5 

orders higher in magnitude than that of the conventional organic dyes. Darkfield allows 

label-free detection that does not require staining of the sample. It also creates a 

distinctive image that reflects the true-color of the gold nanoparticle, which depends on 

the size and shape of the particle.  
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Fluorescence 

 Resonant energy-transfer is observed in fluorescent ligand-capped gold 

nanoparticles. For most of chemisorbed chromophores on gold surface, quenching of the 

fluorescence is observed. Quenching is generally due to increased non-radiative 

relaxation of the excited state due to energy and/or electron transfer [98].  Also, 

quenching is partly due to a decrease in the rate of radiative relaxation related to changes 

in the photonic mode density near the metal cluster surface (plasmonic effect) [99]. Both 

radiative and non-radiative rates critically depend on the size and shape of the 

nanoparticle, the distance between the dye molecules, the orientation of the dipole with 

respect to the dye-nanoparticle axis, and the overlap of the molecule’s emission with the 

nanoparticle’s absorption spectrum [100]. Also, enhancement of fluorescence by metal 

nanoparticles is reported, mostly occurring in aggregated metal colloids [101].  

 

 

Figure 2.8. Fluorescence Quenching of Chemisorbed Chromophore on Gold 
Nanoparticle [98]  
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Fluorescence quenching phenomenon can be used to check successful ligand exchange 

process. When thiolated chromophore, such as doxorubicin, is added to the gold colloid 

solution, the fluorescence of doxorubicin is quenched by successful coating or 

chemisorption of thiolated doxorubicin onto gold nanoparticle surface, where quenching 

is mediated by the thiol group.  

Transmission Electron Microscopy 

High Resolution Transmission electron microscopy (TEM) is the most common 

characterization technique used to photograph the gold core of the gold nanoparticle. 

TEM can be used to verify the morphology and size of the gold nanoparticle. Due to the 

electro-dense surface of the gold nanoparticle, gold core is visible as dark spots in the 

TEM images.  

Surface Enhanced Raman Scattering (SERS) 

SERS is a spectroscopic technique that results from strongly increased Raman 

signals when molecules are attached to nanometer-sized gold nanostructures. Gold 

nanoparticle has unique optical properties that Raman signal from adsorbed reporter 

molecules can be increased up to 1014~1015 orders in magnitude, allowing “single” 

molecular level spectroscopic detection through SERS [102-104]. SERS, an analytical 

technique, can give information on any small chemical changes occurring at the surface 

and interfaces of gold nanoparticle [103, 105].  

 SERS has generated considerable interest, particularly in molecular diagnosis and 

in vivo Raman spectroscopy and imaging. SERS nanoparticle tags, gold nanoparticle with 
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embedded reporter molecules, are capable of providing detailed spectroscopic 

information and results in signals that are much brighter than semiconductor quantum 

dots in near-infrared spectral window [106]. Recently, Qian et al. has demonstrated in 

vivo spectral imaging of cancer in a mouse model (Figure 2.9) [19].  

 

 

Figure 2.9. In vivo Cancer Targeting and Surface-Enhanced Raman Detection by Using 
Antibody-Conjugated Gold Nanoparticle: SERS spectra obtained from the tumor and 
liver locations by using (a) targeted and (b) non-targeted nanoparticles. (c) is pictures 
showing a laser beam focusing to the tumor site or the liver to obtain  SERS 
spectroscopic signal [19]  
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Inductive-Coupled Plasma Mass Spectroscopy 

 Due to lack of presence of elemental gold in animals, the major advantage of 

using gold in biological application is to use it as a “tracer” to quantitatively detect the 

accumulated gold in various organs or tumor by elemental mass spectroscopy [17].  Gold 

nanoparticle is generally insoluble and rarely present in the biological tissues that it 

makes easy to detect even at low concentrations using methods such as inductive coupled 

plasma-mass spectroscopy (ICP-MS). Unlike the “qualitative” approach to detect the 

presence/absence of the molecule of interest by immunohistochemical staining, ICP-MS 

allows to directly “quantify” the exact amount of atom/particle of interest at the location 

of interest.  ICP-MS also allows comparing of relative amount of atom/ particle of 

interest at different organs in a single or multiple subjects.  

Dynamic Light Scattering and Zeta Potential 

In conjunction with the TEM images, dynamic light scattering (DLS) can be used 

to characterize the size of the gold nanoparticle. Furthermore, successful ligand exchange 

process can be verified via dynamic light scattering and zeta potential measurements. As 

the gold nanoparticle is coated with surface ligands, the hydrodynamic diameter increases 

with the addition of the surface ligands, seen in the DLS measurements. Similarly, with 

the addition of surface ligands, the surface charge or the zeta potential of the gold 

nanoparticle becomes more positive.  
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Easy Surface Modification 

The surface of gold nanoparticle can be easily modified via place exchange 

reaction to introduce new physical and chemical properties. Surface capping ligand can 

provide 1) functionality (i.e. targeting ligand for cellular detection, delivery of therapeutic 

or imaging agent) [56, 97, 107], 2) colloidal stability to prevent aggregation [19], 3) non-

fouling surfaces to prevent opsonization by RES (i.e PEGylation) [108], 4) positively, 

neutrally, or negatively charged hydrophilic monolayer [109-111], or 5) hydrophobic 

monolayer [112, 113]. Gold surface is usually coated via thiol-gold bond interactions, 

where chemisorbed thiol onto gold surface has high bond energy of 47kcal/mol, 

compared to weak 6 kcal/mol of amine-gold bond, for strong covalent bonding [114]. 

 

(a)      (b) 

                

Figure 2.10. Different PEG Configurations on Gold Surface: Low surface coverage of 
PEG chains lead to mushroom (a) configuration and chains are located closer to the gold 
surface. A high surface coverage of PEG chain leads to brush (b) configuration that PEG 
chains are extending away from the surface [115]  

 

The place exchange reaction occurs when clean metal is immersed in a dilute 

solution of thiols or disulfides to produce well-defined, organized, self-assembled 

structures at the metal/liquid surface. The place exchange reaction starts with  initial rapid 
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(kinetically driven) adsorption of a monolayer, followed by slower processes which 

results in the formation of the thermodynamically favored layer [116]. It has been 

speculated that longer thiolated ligands displaces the shorter thiolated ligands, which are 

bound onto gold surface [117]. Also, the exchange occurs preferentially at minority sites 

such as defects on the gold surface that 1) the incoming ligand penetrates less crowded 

site of the monolayer  in order to undergo place-exchange or 2) bound ligands undergo 

desorption (preferentially at the defect sites), followed by incoming thiol attachment to 

the newly created surface vacancy [118]. 

Depending on the concentration of ligands added to the gold colloid solution, 

various configurations of polymer monolayers can form. The two representative 

configurations are “mushroom” and “brush” configurations (Figure 2.10).  Brush 

configuration tends to give full surface coverage of the gold surface that result in better 

colloidal stability in high salt in vivo conditions.  

Numerous types of ligands with thiolated terminals can be used to for place 

exchange reaction on a single gold nanoparticle. Thus, the capability to coat gold surface 

with various ligands has brought gold nanoparticle as a promising “multifunctional” 

agent for biomedical applications.   

Rationale for Using AuNP in this study 

Model System for Biomedical Applications in Nanotechnology 

There are several reasons why gold nanoparticle is suitable for study of size effect 

in nanotechnology. First, gold nanoparticles are widely used in biomedical research such 

as cancer diagnostics, cellular imaging, photothermal therapy, and targeted drug delivery 
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applications [56, 65-70, 119], which are representative fields of nanotechnology. Second, 

gold nanoparticle can represent the other hard surface metallic nanoparticles such as 

quantum dots and iron oxide nanoparticles inside the biological system. Third, unlike the 

liposomes or polymeric particles, gold nanoparticles can be synthesized with greater size 

(1-100nm) and shape variabilities (rods, cages, spheres, shells) in a controlled manner. 

Fourth, due to its unique optical properties, various analytical methods such as UV-vis 

spectrophotometry, TEM, SERS, darkfield microscopy, fluorescence, ICP-MS, etc. can 

be used. Polymeric nanoparticles are difficult to trace within the biological system that 

usually fluorescence tags are applied for detection, whereas gold nanoparticle itself can 

be used as a tag for detection due to its unique optical property. Fifth, unlike the other 

metallic nanoparticles such as quantum dots, gold is biocompatible that there is minimal 

toxicity. Sixth, gold nanoparticle is inert and does not degrade inside the biological 

system that it can be easily identified with various analytical techniques. Polymeric 

nanoparticles used for size studies can change its property (via interactions with 

biological molecules) when applied to the biological system and it can further degrade 

over time, making it difficult to trace them for size study. Seventh, chemical and physical 

properties of gold nanoparticle can be easily modified via surface coatings with various 

ligands that it does not require complicated chemical synthesis steps as seen for 

polymeric nanoparticles. Finally, the biggest strength of using gold nanoparticle for size 

effect study is that the amount of gold in the biological system can be easily “quantified”, 

rather than qualitatively referring to the presence and absence of the nanoparticle in 

various organs, by ICP-MS since it is not a readily available element in the biological 

systems. Other biocompatible metallic particle such as iron oxide nanoparticle exists, but 
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this nanoparticle degrades over time and iron (Fe) is prevalent in biological system that 

can lead to false results for ICP-MS-based size effect studies. Similarly, it is difficult to 

quantify the different amount of polymer in various organs since polymer nanoparticle or 

polymer-fluorescence tag nanoparticle can degrade over time and change its property. 

Gold Nanoparticle Design In This Study 

Figure 2.11 illustrates the general design of the gold nanoparticle system used in 

this thesis. There are four types of gold nanoparticle systems used in this thesis (in order 

of appearance): 1) 60nm gold core-drug-PEG system, 2) 5nm gold core-drug-PEG 

system, 3) 5nm gold core-PEG system, and 4) 60nm gold core-PEG system.  For the size 

effect study for drug delivery applications, pro-drug approach was taken where 

chemotherapeutic agent (i.e. doxorubicin) was modified with acid-sensitive hydrazone 

linker. It was designed in a such way that drug will be intact during circulation and will 

be released in an appropriate condition (pH< 5.5) for efficient delivery of the 

chemotherapeutic agent. PEG layer was added to give colloidal stability and non-fouling 

surface for longer circulation time and biocompatibility in the biological system. 
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Figure 2.11. Schematic Design of Gold Nanoparticle Used In This Thesis 

2.4  CONCLUSION 

In conclusion, gold nanoparticle is an ideal candidate for studying the size effect 

in cancer nanotechnology. Gold nanoparticle represents many research fields in the 

cancer nanotechnology, and its unique optical properties render multiple analytical 

methods for characterization.  By applying different sizes of gold nanoparticle (5nm 

versus 60nm) in various studies in this thesis, we can find the ideal size candidate that 

can be applied universally in many research fields in cancer nanotechnology. Here, we 

will particularly focus on the drug delivery application of gold nanoparticle and the size 

effect on therapeutic efficacy, toxicity, biodistribution, and clearance. 
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CHAPTER 3 

SURFACE-ENHANCED RAMAN SCATTERING (SERS)-

ACTIVE GOLD NANOPARTICLE 

 

3.1  ABSTRACT  

 We report development and characterization of multifunctional drug delivery 

system (Au-dox-PEG) for treatment and SERS spectroscopic detection of tumor. 

Doxorubicin, a therapeutic agent and a SERS tag, was chemically conjugated to gold 

nanoparticle via pH-sensitive hydrazone linker then PEG was added to develop Au-dox-

PEG. Doxorubicin occupied maximum of 20% of total surface area of gold nanoparticle 

to result in colloidal stability. SERS spectra were detected for non-aggregated Au-dox-

PEG at near-infrared wavelength, and doxorubicin release was time and pH dependent. 

Consistency in release profile and in vitro cell viability results supports the efficacy of 

Au-dox-PEG system. Thus, the development of Au-dox-PEG multifunctional system 

raises exciting opportunities for simultaneous spectroscopic detection and therapy for 

tumors in the future. 

3.2  INTRODUCTION 

Cancer nanotechnology has gained great interest during recent years [4, 12, 13, 

19, 20, 104, 120, 121]. Adopting a size scale equivalent to biological molecules, 

nanometer-scale particles (1~100 nm in diameter) contain large surface area for 

modification with targeting ligands, anticancer agents, imaging agents, and other small 

molecules. Due to its small size, there is an increased uptake of nanoparticles by cells 

[122], ultimately improving the availability of particular agent. Recently, semiconductor 

quantum dots [4-7] and iron oxides [9-11] have been used to detect and image tumor cells 
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for diagnostics, whereas polymer based nanoparticles [12-14] have been used for 

treatment of cancer. Normally, tumor cells are characterized by leaky vasculature and 

defective lymphatic drainage that results in enhanced permeability and retention (EPR) 

effect [35] . EPR effect prolongs nanoparticle residence time and also selectively “traps” 

nanoparticles for improved efficacy of therapeutic or imaging agents. 

Here, we report development and characterization of a multifunctional 

nanoparticle consist of PEGylated colloidal gold and anticancer agent.  The 

multifunctional delivery system demonstrated therapeutic effect on tumor cells along 

with in vitro spectroscopic detection based on surface enhanced Raman scattering 

(SERS). The idea of using gold nanoparticle as a carrier for drug delivery is recent [50, 

123, 124]. Gold nanoparticles confer several advantages such as biocompatibility [47] 

and size-tunability (synthesizing various sizes) [125]. Furthermore, chemical properties 

are easily altered by attaching various ligands for surface modification. Finally, due to its 

unique optical properties, Raman signal from adsorbed reporter molecules can be 

increased up to 1014~1015 orders in magnitude, allowing single molecular level 

spectroscopic detection [102-104]. This phenomenon, well known as SERS, is an ultra-

sensitive analytical method.  SERS provides characterization and spectroscopic detection 

of reporter molecules and further allows dynamic monitoring of small chemical changes 

occurring at the interfaces of gold nanoparticles [103, 105].      

Recently, Qian, X. et al. reported successful in vivo tumor detection through 

SERS obtained from targeted PEGylated gold nanoparticle with raman tag (malachite 

green isothiocyanate). For our system, raman tag was replaced by doxorubicin, serving a 

dual function of chemotherapeutic agent and SERS reporter molecule. Eliminating the 
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possibility of adding any other SERS tag, sole presence of doxorubicin increases the 

loading efficiency of chemotherapeutic agent onto gold surface.  

 Doxorubicin, an anthracycline derivative, is commonly used chemotherapeutic 

agent for various malignancies such as solid tumors of breast, esophagus, liver, and soft-

tissue sarcoma [126]. Despite its high anti-tumor activity, doxorubicin presents side 

effects by not only inducing tumor cell death but also affecting normal, healthy cells, 

especially leading to irreversible cardiotoxicity [127, 128]. Furthermore, doxorubicin 

exhibits poor water solubility and narrow therapeutic index that it is difficult to 

significantly increase the dosage at target sites [129]. To overcome these side effects 

along with addition of SERS spectroscopic detective function, doxorubicin conjugate 

systems has been developed: doxorubicin was modified with pH-sensitive hydrazone 

linker and attached to gold nanoparticle. Hydrazone linker, PDPH, was also chosen due 

to its pH sensitivity. Hydrazone bond is stable under neutral pH conditions, but it is 

cleaved under mild acidic conditions of less than pH 5 [130], resembling the endosomal 

and lysosomal environment. Furthermore, hydrazone linker provides thiol bond for 

adsorption of doxorubicin onto gold nanoparticle surface. To increase biocompatibility 

and stability of gold colloids, resulting doxorubicin-gold conjugates were coated with 

PEG. This self-assembled, biocompatible model system was characterized by various 

techniques and SERS signal was measured.  PEGylated drug-gold system was stable in 

salt solutions (0.5M NaCl solution and 1X phosphate buffered saline) and released 

doxorubicin in pH and time dependent manner. Also, the resulting drug-gold model 

system not only demonstrated SERS signal but also had similar cytotoxicity effect on 

tumor cells compared to equivalent concentrations of free doxorubicin. Thus, this 

multifunctional system raises exciting opportunities for simultaneous spectroscopic 

detection and therapy for tumors in the future.  
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3.3  MATERIALS AND METHODS 

Materials 

Chemical Reagents  

Doxorubicin hydrochloride was purchased from Polymed Science (Houston, TX).  

Citrate-stabilized gold colloid, 60nm in size, was obtained from Ted Pella, Inc. (Redding, 

CA). Hydrazone linker, 3-[2-Pyridyldithio]propionyl hydrazide (PDPH), was acquired 

from Pierce (Rockford, IL). Poly(ethylene glycol) (CH3O-PEG-SH) of molecular weight 

5000 was purchased from  Rapp Polymere (Germany). Methanol, acetonitrile, dimethyl 

sulfoxide, citric acid, and MTT based in vitro toxicology assay kit were all obtained from 

Sigma (St. Louis, MO).  Mili-Q deionized water (Millipore, 18.2 MΩ cm-1) was used 

throughout the experiments.  All of the products were used without modification or 

purification unless as noted. 

 

Instrumentation  

Nanoparticle surface charge (zeta potential) and size were measured by ZetaSizer 

Nano-ZS90 (Malvern Instrument). Adsorption spectra were obtained through ultraviolet-

visible spectrophotometer (Beckman Coulter DU530).  Fluorescence of nanoparticle was 

evaluated by Fluoromax-2 (Jobin Yvon-Spex, Horiba Group), equipped with xenon arc 

lamp. SERS spectra were obtained from HoloLab Series 5000 VPT sytem (Kaiser Optical 

Systems, Inc.) with the excitation wavelength at 785nm. NMR spectra were obtained 

from INOVA 600. Finally, scanning multiwell spectrometer, Synergy 2 (Biotek), was 

used to read absorption of blue formazan crystals for MTT assay.   
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Cell Line  

Tu686 (human head and neck carcinoma cell line) was a gift from Dr. Xiang-

Hong Peng (Emory University). Tu686 cells were cultured in DMEM/F-12 (Mediatech, 

Inc.; Manassas, VA) containing 10% fetal bovine serum (American Type Culture 

Collection; Manassas, VA) and penicillin-streptomycin solution (Mediatech, Inc.; 

Manassas, VA). Cells were grown in a 37°C humidified incubator containing 5% CO2. 

1X phosphate buffered saline (1X PBS) was purchased from Mediatech, Inc.  

 

Synthesis of doxorubicin-PDPH  

Doxorubicin was conjugated to hydrazone linker, PDPH, in a similar method 

reported previously by Greenfield, R. et al. with slight modifications [130]. Briefly, 

doxorubicin-HCl (11.340 mg, 0.017 mmol) and excess PDPH (10.340 mg, 0.045 mmol) 

were dissolved in methanol (7 mL) and stirred at room temperature in the dark for 6 days. 

Methanol from reaction mixture was evaporated by rotary evaporator and acetonitrile was 

added to obtain a precipitate. Precipitate was collected through centrifugation and 

reprecipitated twice with the same procedure indicated above to remove excess PDPH.  

Final product of 9.450 mg (71 %) was dissolved in dimethyl sulfoxide and stored at 4°C. 

Obtained 1H NMR spectrum was consistent with the values reported in literature [130].   

 

Maximum Loading of doxorubicin-PDPH onto gold nanoparticle  

Maximum loading of doxorubicin-PDPH was governed by colloidal stability and 

surface area coverage of gold nanoparticle. Initially, total surface area of 60nm gold 

nanoparticle was calculated (4*pi* radius2). Then, doxorubicin-PDPH footprint (~1.08 
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nm2) was estimated based on chemical structure and known chemical bond lengths.  

Various concentrations of doxorubicin-PDPH solution (corresponding to 20, 25, and 33% 

surface coverage; diluted in deionized water) were added drop-by-drop manner into 

300uL of stirring gold nanoparticle solution (2.6E10 particles/mL). UV-vis absorption 

spectra were used to verify the colloidal stability of resulting doxorubicin-PDPH-gold 

nanoparticle complex.  

 

PEGylation of doxorubicin-PDPH-gold nanoparticle complex  

Level of PEGylation for doxorubicin-PDPH-gold nanoparticle complex was 

determined based on surface area coverage and salt stability of resulting complex.  Based 

on the results from maximum doxorubicin-PDPH loading onto gold surface, available 

surface area for binding can be calculated. For example, when 20% of gold nanoparticle 

surface area was covered by doxorubicin-PDPH, then there is 80% surface area available 

for other molecules to bind onto gold surface. 25, 50, 75, 100, 150, and 175 percent of the 

remaining (80%) gold surface area was coated with 5K CH3O-PEG-SH.  PEG solution 

(12.1 μM) was added very slowly drop-by-drop into stirring doxorubicin-PDPH-gold 

nanoparticle complex solution. PEG-doxorubicin-PDPH-gold nanoparticle (Au-DOX-

PEG) complex was centrifuged at 2000g for 20 minutes to remove any unbound CH3O-

PEG-SH. Finally, Au-DOX-PEG complex was incubated in 1X PBS and 0.5M sodium 

chloride solutions to test salt stability.  Au-DOX-PEG colloidal stability in salt solutions 

was determined by absorption spectra from UV-vis spectrometer. 
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Characterization of Overall doxorubicin-PDPH-PEG Coating 

Complete adsorption of doxorubicin-PDPH onto gold nanoparticle  

After verifying maximum loading of doxorubicin-PDPH onto gold nanoparticle 

with UV-vis absorption spectra, fluorescence of resulting complex was measured. The 

emission wavelength ranges 500-800nm with excitation wavelength at 471nm. 

Background noise was subtracted from the original spectra to result in doxorubicin 

signal. Then, for further verification of complete adsorption of doxorubicin-PDPH onto 

gold nanoparticle, supernatant was collected after centrifugation at 2000g for 20minutes 

and fluorescence of any unbound doxorubicin was measured. As a control, equal 

concentration of pure doxorubicin was mixed with equivalent amount of gold 

nanoparticles. Then, fluorescence of pure doxorubicin-gold nanoparticle and its 

supernatant was measured as above.  

 

Full coverage of doxorubicin-PDPH-gold nanoparticle with PEG without replacing 

bound doxorubicin-PDPH   

To confirm any replacement of bound doxorubicin-PDPH by addition of CH3O-

PEG-SH, fluorescence of Au-DOX-PEG with various percentages of PEG coating was 

compared to fluorescence of free doxorubicin-PDPH and doxorubicin-PDPH-gold 

nanoparticle (Au-DOX) complex. Furthermore, optimum concentration for full coverage 

of Au-DOX by PEG was determined by zeta-potential and Dynamic Light Scattering 

(DLS) measurements. Gradually, increasing amount of PEG was added to Au-DOX then 

zeta-potential and size of the resulting complex were measured at each adding step. 

Various concentrations of PEG were added to Au-DOX until saturation point was 
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reached that there was no more changes in numerical values for both zeta-potential and 

size. 

 

SERS Measurements 

SERS spectra were measured on HoloLab Raman microscopy. The excitation 

wavelength was at 785 nm from a diode laser. Laser power was 20 mW with the focus 

area of 15 μm in diameter. SERS spectra of pure gold nanoparticle, pure doxorubicin, 

pure doxorubicin-PDPH, AU-DOX, Au-DOX-PEG, and gold with free doxorubicin were 

measured.  Each sample was placed on a glass slide and laser beam was focused 300 s for 

each sample. Resulting SERS spectra was corrected by subtracting the background.   

 

pH-dependent drug release test 

Au-DOX and Au-DOX-PEG, synthesized from the same batch according to the 

method listed above, was divided equally in volume for each time point and placed in pH 

4 citric acid or pH 7.4 PBS buffer. All release study was carried out at 37°C. At each time 

point of 24, 48, 72, 96 hr, Au-DOX and Au-DOX-PEG were centrifuged at 2000g for 20 

minutes and supernatant was collected.  Comparing to concentration (equivalent to 100% 

doxorubicin release) of pure doxorubicin-PDPH in each buffer, concentration of released 

doxorubicin (from collected supernatant) was quantified against pure doxorubicin-PDPH 

fluorescence spectra.  

 

In vitro drug delivery study  

 Tu686 cells were cultured on four different 96 well plates designated for 24, 48, 

72, and 96 hour time points.  For each time point, triplicates of Au-DOX-PEG (0.3 μg 
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DOX/ mL and 0.2nM of gold nanoparticle), pure doxorubicin (0.3 μg DOX/ mL), and 

Au-PEG (0.2 nM), synthesized from the same batch, were added to cells and incubated at 

37°C accordingly with time.  At each designated time point, MTT assay kit (Sigma) was 

used to measure cell viability. MTT assay measures the cellular reduction of MTT by the 

mitochondrial dehydrogenase of viable cells to form blue formazan crystals as product. 

These crystals can be measured spectrophotometrically by obtaining absorbance with a 

scanning multiwell spectrophotometer. Detailed procedure was followed from 

information sheet provided by Sigma. Briefly, MTT powder was reconstituted with 1X 

PBS and added to 10% of culture medium volume.  150uL of reconstituted MTT solution 

was added to each well and continued to culture for 2 hours in the incubator. After 

incubation, 150uL of MTT solubilization solution was added to the original culture to 

dissolve crystals. Dissolved blue formazan crystals were detected at a wavelength of 

570nm, and background absorbance of 96 well plates at 690nm was subtracted from the 

original 570nm readings.  

 

3.4  RESULTS AND DISCUSSION 

Characterization of doxorubicin-gold nanoparticle system 

Doxorubicin-PDPH conjugate (dox-PDPH) was synthesized in methanol (Figure 

3.1(a)).  PDPH acts as a linker and introduces thiol functional group to ensure adsorption 

of doxorubicin onto gold surface. Doxorubicin itself contains an amine group, but it has 

been reported that bonds between gold and sulfur group (~50 kcal/mol) [131-133] is 

much stronger than bonds between gold and amine group (3-6 kcal/mol) [133]. PDPH 

linker also contains acid-sensitive hydrazone bond that chemically bound doxorubicin is 

released under slightly acidic conditions of pH ~ 5 [130, 134], which resembles 
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intracellular endosomal and lysosomal pH conditions.  The doxorubicin-PDPH conjugate 

was water-soluble and was stable when stored at 4°C in dimethyl sulfoxide.  

 

 

  

Figure 3.1. Chemical Synthesis and Self Assembly of Gold Nanoparticle System (a) 
Chemical synthesis of doxorubicin-hydrazone linker conjugate (DOX-PDPH); (b) 
Schematic illustration for synthesis of multifunctional drug delivery system and its pH-
dependent doxorubicin release 

 

Concentrations of dox-PDPH and gold nanoparticle were quantified by UV-vis 

spectroscopy. For dox-PDPH, standard curve at 495nm was created.  The 60nm gold 

nanoparticle had the maximum absorption peak at 531nm and Beer-Lambert law was 
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used to calculate the concentration of gold nanoparticles (extinction coefficient of 3.531 x 

1010 M-1 cm-1).  The UV-vis spectra of dox-PDPH-gold nanoparticle resembled the 

spectra of pure gold nanoparticle that fluorescence spectra was used to further assist in 

analysis.   

Adsorption of dox-PDPH onto gold nanoparticle was studied via UV-vis and 

fluorescence spectra.  Similar to the method used by Cheng, Y. et al., considering planar 

geometry for dox-PDPH on gold surface and inherent chemical bond lengths of the 

system, it was found that single dox-PDPH molecule has a theoretical footprint of 

~1.08nm2. Thus, a single 60nm gold nanoparticle can hold 10513 dox-PDPH molecules 

for complete surface coverage.  However, experimental findings indicate that a single 

60nm gold nanoparticle holds maximum of ~2147 dox-PDPH molecules and be 

colloidally stable. This is equivalent to coating 20% of available surface area (~0.1 wt-%) 

for 60nm gold nanoparticle. It was found that increasing the surface area coverage to 

25% and furthermore to 33% resulted in aggregation of gold nanoparticles, as indicated 

by slight bump in red-wavelength region of UV-vis spectra (Figure 3.2(a)).  Thus, there is 

a concentration dependence of doxorubicin coating that dox-PDPH can occupy maximum 

20% of total surface area of 60nm gold nanoparticle. The resulting dox-PDPH-gold 

nanoparticle system (Au-DOX) was soluble in water and was stable without any 

aggregation.  
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Figure 3.2. Characterization of Dox-PDPH Loading (a) UV-vis spectra indicate that 
maximum of 20% of gold surface can be coated with dox-PDPH for colloidal stability; 
(b) Fluorescence spectra indicate quenching of dox-PDPH on gold surface compared to 
partial quenching of pure doxorubicin with gold nanoparticles 
 

Fluorescence spectra were used to further verify adsorption of dox-PDPH onto 

gold. When dox-PDPH was conjugated to gold nanoparticles in water, it was quenched 

on gold surface (Figure 3.2(b)). Previous studies also report quenching of fluorescent 

dyes on metallic particles when they are chemisorbed onto the surface [135-137]. 
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Furthermore, fluorescence quenching on metallic surface is observed for distance of few 

nanometers  [138, 139], which suggests proximity of doxorubicin onto gold surface 

linked via short PDPH linker. 

When Au-dox was centrifuged, the supernatant did not contain any free 

doxorubicin (Figure 3.2(b)).  In contrast, when equal concentrations of pure doxorubicin 

was added to the same amount of gold nanoparticles in water, fluorescence spectra 

(Figure 3.2(b)) indicate that doxorubicin was partially quenched and free doxorubicin 

was detected in the supernatant. Thus, this indicates that dox-PDPH is completely bound 

onto gold surface. A measurable change in fluorescence intensity resulted from dynamic 

displacement of adsorbed citrate on gold nanoparticle by dox-PDPH. We believe that 

dox-PDPH has formed a covalent bond, or chemisorbed, with gold surface via thiols from 

PDPH linker, whereas pure doxorubicin was loosely bound onto gold surface through 

weak electrostatic interactions, or physisorbed, between positively-charged amine group 

of doxorubicin and negatively-charged gold nanoparticle [140].     

 

Characterization of PEGylated doxorubicin-PDPH-gold nanoparticle system 

 PEG is commonly used in biomedical applications to increase solubility in water 

and enhance biocompatibility of nanoparticles.  PEG provides colloidal stability for Au-

dox system that PEG protects gold nanoparticles from physiological conditions and 

prevents aggregation [141, 142]. PEG also serves as a protective barrier for bound dox-

PDPH on gold surface. Furthermore, PEG reduces adsorption of cellular proteins and 

increases the circulation time of nanoparticles [143].   
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 To find the optimum PEG density for colloidal gold stability, DLS and zeta 

potential measurements were used.  After subtracting the gold surface area (20%) 

occupied by dox-PDPH, the free, available surface area was coated with various 

concentrations of PEG.  As we increased the PEG concentration, saturation point was 

reached for both DLS and zeta potential measurements (Table 3.1). 

 

Table 3.1. Change in Surface Charge (ζ-potential) and Size of Au-dox as More PEG is 
Added to Result in Au-dox-PEG System  
 
 

% PEG† ζ-potential (mV) Size (nm) 
0 -36.5 ± 4.4 61.0 ± 3.9 

50 -27.4 ± 0.6 71.5 ± 0.8 
100 -15.3 ± 4.8 75.0 ± 0.8 
150 -15.0 ± 1.1 75.2 ± 1.2 
175 -14.9 ± 1.4 75.8 ± 0.3 

 

†Indicates the amount of excess PEG added to free, available surface area on gold surface 
after adsorbing dox-PDPH  
 
 

For DLS measurements, Au-dox-PEG kept increasing in size until it reached 

~75nm.  As more PEG is added to Au-dox, PEG initially binds in a mushroom 

conformation then changes its conformation to brush mode for full coverage [144, 145]. 

Mushroom mode is characterized by low surface grafting density and polymer tends to 

“lie” close to the surface that multiple points of a single polymer is covering the surface. 

On the other hand, brush conformation is characterized by high surface grafting density 

and polymer tends to “stand up” that polymer is attached by a single point on the surface. 

Thus, as the conformation changes from mushroom to brush modes, nanoparticle size 

will increase and the size will stop increasing until all the anchoring sites on the gold 
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surface are saturated. For zeta potential measurements, Au-dox-PEG became more 

positive in charge as more PEG was added to the system. PEG has neutral charge and 

gold nanoparticle has negative charge.  As more PEG is added to Au-dox, negative 

charge of gold nanoparticle is shielded and offset by more neutral charge of PEG. Both 

DLS and zeta potential measurements agreed in saturation PEG value to be between 

100% and 150% coverage of the free, available surface area. This saturation PEG value 

resulted in PEG footprint of ~ 0.35 nm2, which is consistent with the literature footprint 

value [146]. Thus, this also supports our dox-PDPH footprint to be a good approximation 

on 60nm gold nanoparticle. Centrifuging Au-dox-PEG did not affect the values for DLS 

and zeta potential. Findings in DLS and zeta potential measurements were supported with 

salt stability test that fully PEGylated Au-dox-PEG was stable in 1X PBS and 0.5M NaCl 

solution (data not shown).   

 Besides Au-dox-PEG colloidal stability, we wanted to ensure that bound dox-

PDPH is not affected by addition of PEG. After conjugating dox-PDPH onto gold, 

various concentrations of PEG were added to Au-dox then fluorescence measurements 

were taken.  Fluorescence spectra (Figure 3.3) indicate that addition of PEG, especially 

excess amount of PEG, did not affect bound dox-PDPH and there was no detectable 

replacement of bound dox-PDPH. Au-dox-PEG fluorescence spectra overlapped with 

Au-dox fluorescence spectrum.   
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Figure 3.3. Fluorescence Spectra of Au-dox-PEG with Various Concentrations of PEG 
Indicate No Detectable Replacement of Bound Doxorubicin-PDPH on Gold Surface 
Compared to Au-dox and Pure Dox-PDPH 
 

If there was replacement of bound dox-PDPH, there should be an increase in 

fluorescence intensity due to presence of free doxorubicin in Au-dox-PEG solution.  As 

seen in Figure 3.2(b), when free doxorubicin is present in the mixture of gold 

nanoparticle, fluorescence of free doxorubicin is not completely quenched by the gold.  

Thus, increase in concentration of free doxorubicin in solution will result in increase in 

overall fluorescence intensity.  

 

Surface Enhanced Raman Scattering (SERS) and Doxorubicin 

 When 20% of gold surface was covered by dox-PDPH, SERS signal was present 

in both Au-dox and Au-dox-PEG (Figure 4.4).  60nm gold nanoparticle is an appropriate 

size for SERS at near-infrared excitation as previous research reports 60-80nm in 

diameter gold nanaoparticles exhibit most efficient SERS at red (630-650nm) and near 

 54



www.manaraa.com

infrared (785nm) excitations [147]. Doxorubicin SERS spectrum was characterized by 

major peaks at 1242, 1261, 1438, and 1603 cm-1 for Au-DOX-PEG system, where the 

Raman shift (cm-1) values were consistent to those in previous studies [148, 149]. 

However, when equivalent concentration of free doxorubicin was added to gold 

nanoparticles, no SERS signal was present. Thus, in contrast to physisorbed free 

doxorubicin, only covalently tethered dox-PDPH induces SERS for non-aggregated gold 

nanoparticles. SERS is also distance dependent that SERS is only present when SERS tag 

is placed within few nanometer of metallic surface [150, 151]. For Au-dox, doxorubicin 

is conjugated to PDPH linker (< 1nm) to gold surface, which is well within the 

specification to induce SERS.   

 

Figure 3.4. Surface Enhanced Raman Scattering (SERS) Spectra of Doxorubicin-PDPH 
on Non-Aggregated Gold Nanoparticle (Au-DOX and Au-DOX-PEG) Compared to 
SERS for Pure Doxorubicin and Gold Nanoparticle Mixture (spectra are shifted on 
purpose for better visualization). 
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It is important to note that doxorubicin SERS spectrum (Figure 3.4) resulted from 

colloidally stable singlets of Au-dox and Au-dox-PEG. Furthermore, doxorubicin was 

covalently bound to gold surface via an acid-sensitive linker, thus resulting in 

fluorescence quench.  Previous research demonstrated SERS spectrum for mixture of 

free, unmodified doxorubicin and aggregated metallic sols or films. [148, 152-154] 

Metallic sols were aggregated by salts or DNA complexation and metallic surface was 

modified to trap doxorubicin to induce SERS.  

 The ability to induce SERS for Au-dox-PEG provides several advantages. First, 

doxorubicin itself can serve as SERS tag for spectroscopic detection of tumor. SERS 

utilizes the intrinsic SERS of the bound molecule, mostly with delocalized pi electrons, 

onto metallic particle and it does not require any labeling [105]. Au-dox-PEG SERS 

spectrum was measured with 785nm laser, allowing near-infrared (NIR) window 

detection of SERS tag for reduced in vivo background noise [155].  Combining the 

enhanced permeability and retention (EPR) effect of tumor cells and NIR window 

detection, Au-dox-PEG provides the potential to spectroscopically locate tumor cells.  

Second, in conjunction with UV-vis and fluorescence spectra, SERS spectra of Au-dox-

PEG provides additional piece of evidence to support chemisorption of dox-PDPH onto 

gold surface.  Third, SERS spectra of Au-dox-PEG can be used for real-time monitoring 

of doxorubicin release. As shown in Figure 3.4, non-covalently bound free doxorubicin 

does not induce SERS. This indicates that when hydrazone bond from PDPH is cleaved 

to release doxorubicin to the surroundings, there will be decrease in SERS intensity over 

time.  
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pH dependent release study of doxorubicin  

 Figure 3.5 shows pH-dependent release profile of doxorubicin linked to 

hydrazone bond of PDPH. For Au-dox, ~80% and ~20% of bound doxorubicin were 

released at pH 4 and pH 7.4 in 24 hours, respectively. More doxorubicin was released 

over time, especially for pH 4 condition, which led to four times more doxorubicin 

release at the end of 96 hours for pH 4 condition compared to that of neutral condition. 

Previous studies also reported increased hydrolysis of hydrazone bond and rapid release 

of doxorubicin in acidic conditions compared to neutral conditions [130, 156].  

 

 

Figure 3.5. pH-Dependent Doxorubicin Release Over Time 

 

Au-dox-PEG system also demonstrated pH-triggered release of doxorubicin, but 

there was a delayed release kinetics compared to Au-dox. Release profile for pH 4 and 

pH 7.4 conditions were similar up to 24 hrs; however, at 48 hr, there was a difference in 
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release profile that ~17% and ~9% of bound doxorubicin were released at pH 4 and pH 

7.4, respectively.  At the end of 96 hr, approximately four times more doxorubicin was 

released at acidic pH compared to neutral pH for Au-dox-PEG. There are two possible 

reasons for the delayed release of doxorubicin: (1) is due to diffusion barrier created by 

PEG coating and (2) is due to interactions between the polymer and the drug. PEG chains 

interact with one another that complex is formed amongst PEG chains by hydrogen 

bonding [157]. As polymer chain length increases and more inter-polymer complexes are 

formed, the release rate of the drug is decreased.  Also, complexation affects PEG 

conformation that polymer coils provide additional diffusion barrier for more tortuous 

path for drug release [157, 158]. Because PEG is a hydrophilic polymer, as the 

hydrophobicity of the drug increases, the diffusion rate of the drug decreases.  

There are several reasons why hydrolysis of hydrazone bond under acidic 

condition was responsible for doxorubicin release. First, dox-PDPH was completely 

bound onto gold surface (Figure 3.2(b) and Figure3. 3) unlike pure doxorubicin mixed 

with gold nanoparticles. In order to observe fluorescence in the supernatant, quenched 

doxorubicin on gold surface must be cleaved away from the gold surface. Bound 

doxorubicin could be released via cleavage of hydrazone bond or Au-S bond of PDPH 

linker.  However, latter is highly unlikely due to strong Au-S bond energy [131-133]. 

Second, there was a high pH-dependent drug release that doxorubicin was released at a 

faster rate (four fold increase) in pH 4 buffer than in pH 7.4 buffer. Although increased 

aqueous solubility of doxorubicin in acidic pH may contribute to doxorubicin release, 

change in pH from neutral to acidic for a pH-insensitive system (micelle containing only 

pure doxorubicin) did not significantly increase the release rate of the drug [159-161]. 
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Thus, hydrolysis of hydrazone bond is responsible for release of doxorubicin into 

surroundings.  

 The pH-dependent Au-dox-PEG is an optimal system for minimizing the drug 

release during circulation and maximizing the drug release under mildly acidic conditions 

of endosomal or lysosomal vesicles. 

 

In vitro drug delivery study  

MTT assay with Tu686 cell line was used to study the anticancer efficacy of Au-

dox-PEG system. Cell viability was inversely related to doxorubicin activity that absence 

or minimal efficacy of doxorubicin resulted in increased cell survival. Cell viability for 

each group (pure doxorubicin, Au-PEG, and Au-dox-PEG) was compared to the control 

group which was free of doxorubicin. Initially, pure doxorubicin had higher anticancer 

efficacy compared to Au-dox-PEG. Figure 6 shows that pure doxorubicin had an 

immediate effect during 24 hour period where ~74% of cells were alive compared to the 

control.  There was a gradual cell viability decrease for pure doxorubicin treated cells that 

about 21 % of cells survived at the end of 96 hour period. 
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Figure 3.6. In vitro Drug Release Study on TU 686 Cells via MTT Assay [0.3 μg DOX/ 
mL] 
 

According to Figure 3.6, Au-dox-PEG had minimal efficacy until 48 hour that 

approximately 80% of cells survived. Beyond 48 hours, there was a significant decrease 

in cell viability for Au-dox-PEG treated cells. Interestingly, In vitro cell viability results 

were consistent with the data obtained from the release profile (Figure 3.5), indicating 48 

hour is a critical time point for doxorubicin release from Au-dox-PEG. This time delay is 

advantageous to elongate in vivo circulation time of drug delivery system in the future. 

Furthermore, compared to the control, cell rounding and decrease in cell density were 

apparent under the microscope (data not shown) at 48 hour time point. At the end of 96 

hour period, ~34% cells survived with Au-dox-PEG treatment.  

Compared to the pure doxorubicin 96 hour toxicity (~21% cell viability), the 

slight lower toxicity of Au-dox-PEG could have resulted from slow release of 
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doxorubicin within PEG shell and different cellular localization of Au-dox-PEG system 

compared to pure drug. However, Au-dox-PEG provides potential to significantly 

increase the accumulation and dosage at target sites by EPR effect and eventually 

increase the anticancer efficacy compared to pure drug.  

To eliminate any uncertainty stemming from gold nanoparticle toxicity itself, we 

used PEGylated gold nanoparticle (Au-PEG), free of doxorubicin, as another control. 

When equivalent gold concentration for Au-PEG was used to treat cells, Au-PEG had 

minimal toxicity on Tu686 cells and had average of 93% cell viability throughout the 96 

hour incubation period.  

 Overall, Au-dox-PEG is an effective drug delivery system. Even though Au-dox-

PEG has slower release rate of doxorubicin, gold nanoparticle successfully delivered 

doxorubicin to cells to release it under acidic conditions. Au-dox-PEG’s anticancer 

efficacy caught up with that of pure doxorubicin after 48 hours and we observed 

sustained release of doxorubicin over time.  

3.5  CONCLUSION 

Here, we have shown the feasibility of developing and characterizing a pH-

sensitive multifunctional drug-gold delivery system for treatment and SERS 

spectroscopic detection of tumor. Multifunctional delivery system, comprising of 

poly(ethylene glycol), doxorubicin, pH-sensitive linker, and gold nanoparticle (Au-dox-

PEG), successfully delivered anticancer agent to tumor cells and displayed surface 

enhanced raman scattering (SERS) for spectroscopic detection. Doxorubicin, modified 

with pH-sensitive hydrazone linker and attached to gold nanoparticle, served as 

therapeutic agent and spectroscopic detection agent. There was a concentration 

dependence of doxorubicin binding to the gold surface that doxorubicin can occupy 
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maximum 20% of total surface area of gold nanoparticle. SERS spectra were detected for 

non-aggregated Au-dox-PEG at near-infrared wavelength. Also, Au-dox-PEG displayed 

pH and time dependent release of doxorubicin. Decrease in pH to acidic condition 

resulted in increased release of doxorubicin compared to neutral condition. It took 

approximately 48 hours to see significant anticancer efficacy of Au-dox-PEG. 

Consistency in release profile and in vitro cell viability results supports the therapeutic 

efficacy of Au-dox-PEG. Anticancer efficacy of Au-dox-PEG caught up with that of pure 

doxorubicin after 48 hours that we observed controlled release of doxorubicin over time. 

Thus, the development of Au-dox-PEG multifunctional nanoparticle raises exciting 

opportunities for simultaneous spectroscopic detection and therapy of tumors in the 

future. 
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CHAPTER 4 

DRUG DELIVERY APPLICATION OF SMALL-SIZED GOLD 

NANOPARTICLE 

 

4.1  ABSTRACT  

 Our results demonstrated that functionalized 5nm gold nanoparticle-based drug 

delivery system represents a highly attractive candidate as a potential drug delivery 

carrier for cancer nanotherapy. Our smart design of combining prodrug approach (drug-

hydrazone linker) with PEGylation renders controlled release of anticancer agent and 

colloidal stability characteristics to the system, thus making gold nanoparticle-anticancer 

agent-PEG (Au-DOX-PEG) system a promising drug delivery platform for in vivo 

applications. Due to its size, Au-DOX-PEG accumulated at a high concentration at the 

tumor site via enhanced permeability and retention (EPR) effect and displayed 

therapeutic efficacy against tumor. In contrast to pure doxorubicin which resulted in 

heart, kidney, and lung toxicities, passively targeted Au-DOX-PEG system did not 

display any apparent toxicity in vital organs.  

4.2  INTRODUCTION  

The ultimate goal of drug delivery is 1) to increase the bioavailability of the drug 

and 2) to reduce the toxicity to healthy cells. Nanoscopic systems, such as gold 

nanoparticles, can alter the pharmacological and therapeutic properties of the drugs being 

incorporated and overcome any intrinsic toxicity or poor bioavailability of the drug.  

Normally, tumor cells are characterized by leaky vasculature and defective 

lymphatic drainage that results in enhanced permeability and retention (EPR) effect [35]. 
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EPR effect prolongs nanoparticle residence time and also selectively “traps” 

nanoparticles for improved efficacy of therapeutic agents. By taking advantage of these 

size and EPR effect, one can increase the efficacy of drug at the tumor site. 

The idea of using gold nanoparticle as a carrier for drug delivery is recent [50, 

123, 124, 143]. Previously, gold nanoparticles have been mainly used for chemical 

sensing, photothermal therapy, and diagnostic purposes[34]. Gold nanoparticle makes an 

ideal candidate as a drug delivery platform for cancer therapy due to its several attractive 

physical and chemical properties. Gold nanoparticles are inert and have low in vivo 

toxicity compared to the other metallic materials [93, 94]. Gold nanoparticles are easily 

synthesized with various shapes and sizes that it confers size and shape-tunability [89]. 

Furthermore, chemical properties are easily altered by attaching various ligands via 

covalent thiol-gold bond interactions for surface modification. Also, gold nanoparticle is 

generally insoluble and rarely present in the biological tissues that it makes easy to detect 

even at low concentrations using methods such as ICP-MS [17]. Finally, its unique 

optical property allows spectroscopic detection (SERS) [102-104] and microscopic 

visualization (transmission electron and darkfield microscopy) [97, 162].  

Currently, only a few gold nanoparticle-based anticancer drug delivery systems 

have been studied, compared to the polymer-based delivery systems [124, 143, 163-165]. 

Few cases are reported for delivery of small molecule therapeutic agents by gold 

nanoparticles for cancer therapy, which relies on passive (EPR effect) and active 

targeting [50, 78, 166]. For example, 13nm gold nanoparticle was coated with 

methotrexate (MTX) for treatment of lung cancer [166].  Similarly, 26nm gold 

nanoparticle was coated with TNFα, thiolated poly (ethylene glycol), and paclitaxel and 
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resulted in 10-fold more delivery of TNFα and paclitaxel to the tumor site for effective 

treatment [143]. When anticancer agent gemcitabine was conjugated to gold nanoparticle 

with VEGF antiangiogenic molecule, it also showed therapeutic efficacy [164]. Finally, 

30nm gold nanoparticle coated with PEG, arginine-glycine-aspartic acid (RGD) peptide, 

and nuclear localization signal peptide resulted in nuclear-targeting gold nanoparticles 

that causes apoptosis of cancer cells [167].  

To this date, most of the gold nanoparticle-based drug delivery system utilizes 

gold nanoparticles that are larger than 10nm, with an exception of recent study on 2nm 

gold nanoparticle loaded with paclitaxel [124]. However, this 2nm gold nanoparticle-

paclitaxel system study only focuses on characterization and loading efficiency, omitting 

any biological effects of the system. Moreover, it has been reported that gold 

nanoparticles of 1-2nm are highly toxic to both healthy and cancerous cells [45, 46].  

This work is significant by providing an insight on a potential ideal candidate for 

gold nanoparticle-based drug delivery system that uses small (5nm) gold nanoparticle to 

study therapeutic efficacy on solid tumor. To our knowledge, we are the first team to 

investigate in detail for 5nm gold nanoparticle drug delivery system in vivo and its 

behavior for better understanding of the gold nanoparticle-based drug delivery. To date, 

most of the gold nanoparticle-based drug delivery systems have been focusing on a size 

scale of 20~35nm. 5nm gold nanoparticle is an ideal size scale that renders the following 

characteristics that is attractive for usage in gold nanoparticle-based drug delivery: (1) it 

has been reported that gold nanoparticle with a size of 4nm~18nm were taken up by 

human cells without any cytotoxicity [93], (2) particles that are smaller than 5.5nm can 

be cleared out from the body through rapid and efficient renal filtration and urinary 
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excretion [64], (3) 5nm particles are big enough to be visualized under various 

microscopy methods and allow application of various characterization techniques such as 

UV-vis spectroscopy, SERS, dynamic light scattering, etc., (4) it confers higher drug 

loading efficiency than larger particles, (4) it is small enough for extravasation from the 

blood vessel to be delivered to the target site [37], (5) it fits the size range that is effective 

for EPR effect for tumor passive targeting [24], and (6) the ease of surface modification 

such as PEG allows prolonged circulation time of the particle and delays the RES uptake 

of the system. 

Here, the application of small-sized 5nm gold nanoparticle as a drug delivery 

system (Au-DOX-PEG) demonstrated 1) successful accumulation of Au-DOX-PEG at 

the tumor site via passive targeting by taking advantage of the EPR effect for therapeutic 

efficacy and 2) resulted in no apparent toxicity to vital organs.  

 

4.3  MATERIALS AND METHODS 

Materials 

Chemical Reagents  

Doxorubicin hydrochloride was purchased from Polymed Science (Houston, TX).  

Citrate-stabilized gold colloid, 5 nm in size, was obtained from Ted Pella, Inc. (Redding, 

CA). Hydrazone linker, 3-[2-Pyridyldithio]propionyl hydrazide (PDPH), was acquired 

from Pierce (Rockford, IL). Poly(ethylene glycol) (CH3O-PEG-SH) of molecular weight 

5000 was purchased from  Rapp Polymere (Germany). Methanol, acetonitrile, dimethyl 

sulfoxide, citric acid, and MTT based in vitro toxicology assay kit were all obtained from 

Sigma (St. Louis, MO).  Mili-Q deionized water (Millipore, 18.2 MΩ cm-1) was used 
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throughout the experiments.  All of the products were used without modification or 

purification unless as noted. 

Instrumentation  

Nanoparticle surface charge (zeta potential) and size were measured by ZetaSizer 

Nano-ZS90 (Malvern Instrument). Adsorption spectra were obtained through ultraviolet-

visible spectrophotometer (Beckman Coulter DU530).  Fluorescence of nanoparticle was 

evaluated by Fluoromax-2 (Jobin Yvon-Spex, Horiba Group), equipped with xenon arc 

lamp. Scanning multiwell spectrometer, Synergy 2 (Biotek), was used to read absorption 

of blue formazan crystals for MTT assay. Gold content was analyzed by ICP-MS (HP 

4500, Agilent Technologies).  TEM were taken by using Hitachi H7500 high-

magnification electron microscope.  Finally, Olympus IX71 inverted microscope was 

used to take brightfield and darkfield images.  

 

Cell Line and Mouse Model  

Murine breast cancer cell line 4T1 was a gift from Dr. Lily Yang (Emory 

University). 4T1 cells were cultured in RPMI-1640 (Mediatech, Inc.; Manassas, VA) 

containing 10% fetal bovine serum (American Type Culture Collection; Manassas, VA) 

and penicillin-streptomycin solution (Mediatech, Inc.; Manassas, VA). Cells were grown 

in a 37°C humidified incubator containing 5% CO2. 1X phosphate buffered saline (1X 

PBS) was purchased from Mediatech, Inc. 6-7 week old female Balb/C mice were 

obtained from commercial vendor (Jackson Laboratories).  The protocols were approved 

by the Institutional Animal Care and Use Committee (IACUC) of Emory University.  
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Statistical Analysis 

Statistical analysis was performed using one-way ANOVA followed by multiple 

comparison Bonferroni’s test. Data were collected from at least three different animals 

and P<0.05 was considered statistically significant.  

 

Synthesis of doxorubicin-PDPH  

Doxorubicin was conjugated to hydrazone linker, PDPH, in a similar method 

reported previously by Greenfield, R. et al. with slight modifications [130]. Briefly, 

doxorubicin-HCl (11.340 mg, 0.017 mmol) and excess PDPH (10.340 mg, 0.045 mmol) 

were dissolved in methanol (7 mL) and stirred at room temperature in the dark for 6 days. 

Methanol from reaction mixture was evaporated by rotary evaporator and acetonitrile was 

added to obtain a precipitate. Precipitate was collected through centrifugation and 

reprecipitated twice with the same procedure indicated above to remove excess PDPH.  

Final product of 9.450 mg (71 %) was dissolved in dimethyl sulfoxide and stored at 4°C. 

Obtained 1H NMR spectrum was consistent with the values reported in literature [130].   

 

Drug Loading Efficiency  

Adsorption of DOX-PDPH onto gold nanoparticle was studied via UV-vis and 

fluorescence spectra.  Concentrations of DOX-PDPH and gold nanoparticle were 

quantified by UV-vis spectroscopy. For DOX-PDPH, standard curve at 495nm was 

created.  The 5nm gold nanoparticle had the maximum absorption peak at 514 nm and 

Beer-Lambert law was used to calculate the concentration of gold nanoparticles 

(extinction coefficient of 9.696 x 106 M-1 cm-1). Similar to the method used by Cheng, Y. 
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et al., considering planar geometry for DOX-PDPH on gold surface and inherent 

chemical bond lengths of the system, it was found that single DOX-PDPH molecule has a 

theoretical footprint of ~1.08nm2. When surface coverage per 5nm gold nanoparticle was 

increased from 25, 100, 150, and 200 %, the corresponding loaded doxorubicin weight 

percents (wt-%) were 1.42, 5.58, 8.35, 11.12 wt-%, respectively. UV-vis absorption 

spectra and fluorescence were used to verify the colloidal stability of resulting 

doxorubicin-PDPH-gold nanoparticle complex.  

 

PEGylation of Gold Nanoparticle-Anticancer Agent System  

To find the optimum PEG density for colloidal gold stability, dynamic light 

scattering measurement was used for size change.  After subtracting the gold surface area 

occupied by modified doxirubicin, available surface area was coated with various 

concentrations of PEG.  As we increased the PEG concentration, saturation point was 

reached for gold-drug-PEG size measurement (Table 1). PEG-doxorubicin-PDPH-gold 

nanoparticle (Au-DOX-PEG) complex was ultra-centrifuged at 100,000g for 1 hour to 

remove any unbound CH3O-PEG-SH. Then the resulting gold system was freezed-dried 

to a powder form. Finally, Au-DOX-PEG complex was incubated in 1X PBS and 0.5M 

sodium chloride solutions to test salt stability.  Au-DOX-PEG colloidal stability in salt 

solutions was determined by absorption spectra from UV-vis spectrometer. 

 

pH-dependent drug release test 

Colloidal gold system, Au-DOX-PEG, synthesized from the same batch according 

to the method listed above, was divided equally in volume for each time point and placed 
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in pH 5 citric acid or pH 7.4 PBS buffer. All release study was carried out at 37°C. At 

each time point of 24, 48, 72, 96 hr, Au-DOX-PEG were ultra-centrifuged at 100,000g 

for 1 hour and supernatant was collected.  Comparing to concentration (equivalent to 

100% doxorubicin release) of pure doxorubicin-PDPH in each buffer, concentration of 

released doxorubicin (from collected supernatant) was quantified against pure 

doxorubicin-PDPH fluorescence spectra.  

 

In vitro cytotoxicity study  

 4T1 cells were cultured on four different 96 well plates designated for 24, 48, 72, 

and 96 hour time points.  For each time point, triplicates of Au-DOX-PEG (7 μg DOX/ 

mL equivalent), pure doxorubicin (7μg DOX/ mL), and Au-PEG, synthesized from the 

same batch, were added to cells and incubated at 37°C accordingly with time.  At each 

designated time point, MTT assay kit (Sigma) was used to measure cell viability. MTT 

assay measures the cellular reduction of MTT by the mitochondrial dehydrogenase of 

viable cells to form blue formazan crystals as product. These crystals can be measured 

spectrophotometrically by obtaining absorbance with a scanning multiwell 

spectrophotometer. Detailed procedure was followed from information sheet provided by 

Sigma. Briefly, MTT powder was reconstituted with 1X PBS and added to 10% of 

culture medium volume.  150μL of reconstituted MTT solution was added to each well 

and continued to culture for 2 hours in the incubator. After incubation, 150uL of MTT 

solubilization solution was added to the original culture to dissolve crystals. Dissolved 

blue formazan crystals were detected at a wavelength of 570nm, and background 

absorbance of 96 well plates at 690nm was subtracted from the original 570nm readings.  
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Cellular Uptake of Colloidal Gold Study  
 
 4T1 cellular uptake of doxorubicin, gold-drug-PEG, and gold-PEG will be 

determined by fluorescence and darkfield microscopy. Control, doxorubicin, gold-drug-

PEG, and gold-PEG groups will be created. Equal concentration of doxorubicin (5 μg 

DOX/ mL) will be used for doxorubicin and gold-drug-PEG groups, whereas same 

amount of gold will be used for gold-drug-PEG and gold-PEG groups. Control group will 

be left untreated. Cells will be treated with according groups and incubated at 37°C for 

2.5 hours. Then, cells will be fixed with 3.7% formaldehyde and stained with DAPI for 

nucleus detection. Cover-slipped cell slide will be then imaged with fluorescence 

microscope to confirm the uptake of drug and particles by cells. 

 

In vivo study of gold system 
 

Murine breast cancer cell line 4T1 will be injected into Balb/c mouse at mammary 

fat pad, subcutaneously with 2 X 106 tumor cells. When tumor size was approximately 

100mm3, mice were divided randomly into group of four (n=5) of control (untreated), 

pure doxorubicin, polymer-drug-gold conjugate, and polymer-gold conjugate groups. 

Drug will be administered through tail-vein injection (2mg DOX/kg and 0.04g Au/kg) 

and all groups will be treated four times total (every 3 days) except for the control group, 

which is left untreated. Tumor size and body weight will be measured every 2 days. In 

addition to tumor size and body weight changes, effect of polymer-drug-gold conjugate 

on tumor treatment is further evaluated by weighing the harvested tumor and comparing 

the “actual” size of the tumor amongst various groups. After the sacrifice, various organs 

including heart, kidney, lung, liver, spleen, brain, and tumor will be collected for various 
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analyses. To verify the uptake of polymer-drug-gold conjugate via EPR effect, 

concentration and location of gold nanoparticle within tumor tissue will be studied by 

ICP-MS, histology, TEM, and dark-field microscopy. Evaluations of any toxicity exerted 

by polymer-drug-gold conjugate on healthy, normal tissue will be mainly investigated by 

histological analysis. For serum biochemical analysis, whole blood was centrifuged twice 

at 3000 rpm for 10 minutes in order to separate serum. Using a biochemical analyzer 

(Type 7170, Hitachi), serum biochemical analysis was carried out to determine the serum 

level of various proteins. A certified pathologist will compare the stained tissue section 

from all four groups for any morphological changes occurring in various organs 

harvested from the mouse. 

 
 
4.4  RESULTS AND DISCUSSION  

Chemical Synthesis and Characterization of Au-DOX-PEG 

Doxorubicin, an anthracycline derivative, is commonly used chemotherapeutic 

agent for various malignancies such as solid tumors of breast, esophagus, liver, and soft-

tissue sarcoma [130]. Despite its high anti-tumor activity, doxorubicin presents side 

effects by not only inducing tumor cell death but also affecting normal, healthy cells, 

especially leading to irreversible cardiotoxicity. Furthermore, doxorubicin exhibits poor 

water solubility and narrow therapeutic index that it is difficult to significantly increase 

the dosage at the target sites. To overcome these side effects, doxorubicin conjugate 

system has been developed: doxorubicin was modified with pH-sensitive hydrazone 

linker (PDPH) and attached to gold nanoparticle. Hydrazone bond is stable under neutral 

pH conditions, but it is cleaved under mild acidic conditions of pH less than 5.5 [168], 
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resembling the endosomal and lysosomal environment. In addition to providing pH 

sensitivity, hydrazone linker PDPH provides thiol bond for adsorption of modified 

doxorubicin onto gold nanoparticle surface.  

Gold nanoparticle-anticancer agent-PEG (Au-DOX-PEG) drug delivery system 

was synthesized by first coating the gold nanoparticle with modified doxorubicin (DOX-

PDPH) then with thiolated methoxy-PEG (Figure 4.1(a)). PEG provides colloidal 

stability for gold-doxorubicin conjugate (Au-dox) system that PEG protects gold 

nanoparticles from physiological conditions and prevents aggregation. Furthermore, PEG 

reduces adsorption of cellular proteins and increases the circulation time of nanoparticles 

[169]. The self-assembly of gold nanoparticle-anticancer agent-PEG system is a 

spontaneous process, which resulted in water-soluble, colloidally stable Au-DOX-PEG 

system with a size of ~17.8 ± 1.3 nm and -2.16 ± 0.217 mV for zeta potential.  
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Figure 4.1. Chemical Synthesis and Self Assembly of AU-DOX-PEG 

 
 

 To find the maximum drug loading capacity of 5nm gold nanoparticle while 

maintaining the colloidal stability of gold nanoparticle, UV-vis spectroscopy and 

fluorescence spectra were used to test the adsorption of series of different concentrations 

of DOX-PDPH onto gold. When DOX-PDPH was conjugated to gold nanoparticles in 
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water, the fluorescence of doxorubicin was quenched on gold surface (Figure 4.2 “Before 

Centrifuge”). Previous studies also report quenching of fluorescent dyes on metallic 

particles when they are chemisorbed onto the surface [135-137]. Furthermore, 

fluorescence quenching on metallic surface is observed for distance of few nanometers 

[138, 139], which suggests proximity of doxorubicin onto gold surface linked via short 

PDPH linker. When gold nanoparticle-anticancer agent-PEG system was centrifuged for 

purification, the supernatant did not contain any detectable amount of unbound 

doxorubicin up to 5.58 wt-%. However, when excess amount of DOX-PDPH was added 

to the gold nanoparticle solution, we observed fluorescence of unbound DOX-PDPDH in 

the supernatant (Figure 4.2 (c)). Thus, the maximum drug loading capacity of 5nm gold 

nanoparticle was ~5.5 wt-%.  

 

 
 
 
Figure 4.2.  Maximum Drug Loading Efficiency using Fluorescence 
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To find the optimum PEG density for colloidal gold stability, dynamic light 

scattering measurement was used for size change.  After subtracting the gold surface area 

occupied by modified doxorubicin, available surface area was coated with various 

concentrations of PEG.  As we increased the PEG concentration, saturation point was 

reached for gold-drug-PEG size measurement (Table 4.1).   

Table 4.1. PEG Coating and Gold Nanoparticle-Anticancer Agent-PEG (Au-DOX-PEG) 
System Size Change 
 

% PEG† Au-DOX-PEG Size (nm) 
0 (Au-DOX Only) 7.0 ± 1.6 

25 17.7 ± 1.5 
50 18.0 ± 1.6 

100 17.7 ± 1.4 
150 17.9 ± 1.2 
200 17.7 ± 1.5 

 
†Indicates the amount of excess PEG added to free, available surface area on gold surface after adsorbing 
DOX-PDPH (~5.5 wt-%) 
 
 
 

Saturation of gold nanoparticle surface at low % PEG values indicate that most of 

the gold surface is coated with modified doxorubicin, and PEG is bound onto the gold 

surface in a “mushroom conformation”. Mushroom conformation is characterized by low 

surface grafting density and polymer tends to “lie” close to the surface that multiple 

points of a single polymer is covering the surface [115]. Despite the low PEG surface 

density, the resulting Au-DOX-PEG was colloidally stable in various mediums such as 

salt and serum solutions (APPX A Figure A.1). We suspect that in conjunction with 

DOX-PDPH coating, small-sized gold nanoparticle core (5nm) and long chain length 

(MW=5000) PEG resulted in a sufficient coverage of the gold surface for colloidal 

stability. It has been reported that nanoparticle stability increases with increasing PEG 

length and decreasing nanometer particle diameter [43]. In particular, PEG with a 

 76



www.manaraa.com

molecular weight of ≥ 2000 Daltons can significantly reduce protein adsorption and result 

in colloidal stability in highly ionic strength media due to increased steric repulsive 

forces [43, 170-175]. Supporting our results, Liu, Y. et al found that 1) for any given 

PEG length, decrease in nanoparticle diameter resulted in a decreased amount of PEG per 

nanoparticle input to the reaction mixture and 2) for a given nanoparticle diameter, 

increase in PEG length resulted in a decrease in the amount of PEG amount input to the 

reaction mixture for colloidal stability. Furthermore, in accordance with DLVO theory, 

small-sized gold nanoparticles are more stable in general than the larger-sized gold 

nanoparticles due to minimized van der Waals attraction energy.  

Finally, we also wanted to ensure that bound doxorubicin is not affected by the 

addition of PEG. Similar to the method used for drug loading efficiency, the supernatant 

collected from centrifugation of various concentrations of PEG coated gold-drug-PEG 

systems indicated that addition of PEG, especially excess amount of PEG, did not affect 

bound doxorubicin and there was no detectable replacement of the bound drug. 

 

Drug Release Profile  

Figure 4.3 shows pH-dependent release profile of doxorubicin linked to 

hydrazone bond of PDPH at 37°C. Initially, doxorubicin is slowly released for both 

acidic and basic conditions that no detectable release was observed up to 48 hours. More 

doxorubicin was released over time, especially for acidic condition, which led to 

approximately 4 times more doxorubicin release at the end of 96 hours for pH 5 condition 

compared to that of neutral condition. Previous studies also reported increased hydrolysis 
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of hydrazone bond and rapid release of doxorubicin in acidic conditions compared to 

neutral conditions [130, 156].  

 
 

 
 
Figure 4.3. pH-Sensitive Drug Release 
 

The slow, delayed release of doxorubicin from Au-DOX-PEG system is due to (1) 

the diffusion barrier created by PEG coating and (2) interactions between the polymer 

and the drug. PEG chains interact with one another that complex is formed amongst PEG 

chains by hydrogen bonding [157]. As polymer chain length increases and more inter-

polymer complexes are formed, the release rate of the drug is decreased.  Also, 

complexation affects PEG conformation that polymer coils provide additional diffusion 

barrier for more tortuous path for drug release [157, 158]. Because PEG is a hydrophilic 

polymer, as the hydrophobicity of the drug increases, the diffusion rate of the drug 

decreases. However, we believe that combination of the EPR effect and various in vivo 

 78



www.manaraa.com

conditions will affect the release profile of Au-DOX-PEG system to be more effective 

system.  

 

In Vitro Therapeutic Efficacy of Au-DOX- PEG System 

MTT assay with 4T1 cell line was used to study the anticancer efficacy of Au-

DOX-PEG system. Cell viability was inversely related to doxorubicin activity that 

absence or minimal efficacy of doxorubicin resulted in increased cell survival. Cell 

viability for each group (pure doxorubicin, Au-PEG, and Au-DOX-PEG) was compared 

to the control group which was free of doxorubicin (Figure 4.4 (b)).  

Compared to the pure doxorubicin 96 hour toxicity, the slightly lower toxicity of 

Au-DOX-PEG could have resulted from slow release of doxorubicin within PEG shell 

(also seen in Figure 4.3) and different cellular localization of Au-DOX-PEG system 

compared to the pure drug.  

The slow release of doxorubicin from Au-DOX-PEG system was also evident in 

the fluorescence images of the 4T1 murine breast cancer cells incubated with the gold 

conjugate system (Figure 4.4 (a)). When equal concentration of doxorubicin was used, 

cells that contained Au-DOX-PEG displayed less fluorescence intensity compared to the 

pure doxorubicin incubated cells. Also, when equal concentration of gold nanoparticle 

was used, only Au-DOX-PEG displayed fluorescence for doxorubicin and Au-PEG 

fluorescence images resembled that of CONTROL where no fluorescence was detected 

for doxorubicin. The actual uptake of gold nanoparticle by 4T1 cells is evident in TEM 

images in next section. 
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Figure 4.4. In vitro Therapeutic Efficacy of Au-DOX-PEG and Cellular Uptake of Gold 
Nanoparticle (a) 4T1 cells were incubated with doxorubicin, Au-DOX-PEG, and Au-PEG 
at 37°C for 2.5 hours and fluorescence images were taken for DAPI (nucleus staining) 
and DOX (Doxorubicin) (equal amount of gold was used for Au-DOX-PEG and AU-
PEG groups; 5μg/mL of doxorubicin and equivalent was used for doxorubicin and Au-
DOX-PEG, respectively) (b) MTT assay results with 4T1 murine breast cancer cells 
(equal amount of gold was used for Au-DOX-PEG and AU-PEG groups; 7 μg/mL of 
doxorubicin and equivalent was used for doxorubicin and Au-DOX-PEG, respectively)  
 

In vivo Therapeutic Efficacy of Au-DOX-PEG Drug Delivery System for solid tumor 

Body Weight, Tumor Volume, and Tumor Raw Weight Changes 

To investigate the therapeutic efficacy of Au-DOX-PEG drug delivery system in 

vivo, we conducted a comparison study between pure doxorubicin versus Au-DOX-PEG 

system on 4T1 murine breast cancer mice model. 4T1 tumor cells were injected 

subcutaneously at the mammary fat pad of female BALB/c mice. Treatments were 
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carried out by injecting saline (control), pure doxorubicin, Au-DOX-PEG (at an equal 

doxorubicin dose of 2.4 mg/ kg), and Au-PEG into tail-vein for every 3 days over ~2 

weeks (n=5 for each group). As shown in Figure 4.5, tumor volume was measured every 

other day by a caliper and it was observed that Control group (untreated) and gold 

nanoparticle only group (Au-PEG) displayed average fractional tumor volumes (i.e. final 

tumor volume divided by initial tumor volume) of 6.3 ± 1.8 and 6.6 ± 2.4, respectively, 

on day 16. Statistical analysis results indicated that there was no significant difference 

between the Control and Au-PEG groups (P>0.05 for Control versus Au-PEG). Pure 

doxorubicin treated group resulted in fractional tumor volume of 3.1 ± 1.2 on day 16, 

which represents tumor group inhibition or TGI of ~50 % (i.e. TGI= 100 * {[Control 

fractional tumor volume – Group of Interest fractional tumor volume]/ Control fractional 

tumor volumes}). The statistical analysis result indicated that there were no significant 

differences between the Control versus pure Doxorubicin groups and Au-PEG versus 

pure Doxorubicin groups (P>0.05 for doxorubicin versus control; P> 0.05 for 

doxorubicin versus Au-PEG). In contrast, Au-DOX-PEG treatment resulted in a 

fractional tumor volume of 1.8 ± 0.3 on day 16 (P<0.01 Au-DOX-PEG versus Control; 

P<0.05 Au-DOX-PEG versus Au-PEG; P>0.05 Au-DOX-PEG versus pure doxorubicin) 

with tumor group inhibition of ~71%, which was more effective than the pure 

Doxorubicin group.  

Alternatively, therapeutic efficacy of Au-DOX-PEG system was studied by 

extracting tumor from mice and raw tumor weight was measured from each group on day 

16. Similar to the tumor volume change results, there was no significant difference 

between the Control and Au-PEG average tumor raw weights (P>0.05 for Control versus  
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(a) 

(b) 

(c) 

 
 
Figure 4.5.  In Vivo Results (a) Weight Change: there was no visible weight changes 
amongst the group over the course of treatment (b) Tumor Volume Change: Tumor 
Volume Change for Control, Doxorubicin, Au-DOX-PEG, and Au-PEG (*: p > 0.05; # : 
p < 0. 01; §: p > 0.05; pink arrow indicates treatment); Tumor Weight (**: p < 0.05 from 
control only) (c) Extracted Tumor Raw Weight [n=5 and standard error of mean were 
used for all figures] 
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Au-PEG). Compared to the average Control tumor raw weight, Doxorubicin group 

resulted in an average tumor weight of 0.73 ± 0.22 g, which was ~25% lighter than the 

Control group (P>0.05 for Doxorubicin versus Control).  Au-DOX-PEG group had an 

average tumor weight of 0.38 ± 0.11 g, which was significantly lighter than the Control 

group (~61% lighter than the Control group with P<0.05 for Au-DOX-PEG versus 

Control). Compared to the pure Doxorubicin group, Au-DOX-PEG group was ~47% 

lighter but it was not statistically significant enough (P< 0.05 for Au-DOX-PEG versus 

pure Doxorubicin). Thus, consistent with the tumor volume change results, Au-DOX-

PEG group resulted in a tumor raw weight that was significantly differently (all P<0.05) 

from the Control and Au-PEG groups at the end of the therapy. In contrast, Doxorubicin 

group did not display statistically significant difference between Control group or 

between the Au-PEG group tumor raw weights.  

Finally, body weights amongst the Control, pure Doxorubicin, Au-DOX-PEG, 

and Au-PEG groups were measured throughout the therapy. The statistical analysis 

results indicates that there was no significant differences amongst the body weights for 

all four groups (P>0.05).  

In summary, there was no significant difference between Control and 

Doxorubicin, whereas Au-DOX-PEG group showed statistically significant difference 

from the Control group. Moreover, Au-DOX-PEG group showed statistically significant 

difference from the Au-PEG group, whereas pure Doxorubicin group did not. Although 

Au-DOX-PEG group exhibited somewhat higher tumor group inhibition (TGI) index than 

the Doxorubicin group, there was no statistically significant difference (P>0.05) seen 

between Doxorubicin and Au-DOX-PEG groups. However, it should be noted that Au-
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DOX-PEG displayed no apparent toxicity to the vital organs in contrast to pure 

Doxorubicin group as shown in the upcoming section.   

 

Spatial Distribution of Au-DOX-PEG in Tumor 

For the drug delivery nanoparticle system to exert its full therapeutic efficacy, it 

must reach the cancer cells in the solid tumor by (1) crossing (i.e. extravasate) the tumor 

blood vessel wall into the tumor interstitium (i.e vascular permeability), (2) migrating 

through the tumor interstitial space or penetration away from the blood vessel through the 

extracellular matrix, and then (3) penetrating or entering the cancer cell (i.e. cellular 

uptake) [176, 177]. Our system resulted in a successful extravasation by diffusion 

through the tumor blood vessel wall due to small size scale of Au-DOX-PEG (Figure 

4.6). Tumor accumulation is a function of both the rate of extravasation from the blood to 

the tumor space and also the rate of clearance from the tumor. Hobbs et al. showed that 

the rate of extravasation ofs”small-sized” bovine serum albumin (BSA) of 7nm was 

independent of pore size over a variety of tumor models [28]. This demonstrates that for a 

~7 nm molecule, which is much smaller than the transvascular pore, extravasation is not 

dependent on pore size but is instead a diffusive process that will depend on the 

concentration gradient between blood and tumor. Chilkoti et al. demonstrated that 

dextran drug carrier of molecular weights of 40 and 70 kDa (diameters of 11.2-14.6nm) 

resulted in a successful extravasation and penetration into the tumor [23]. Similarly, Tang 

et al. demonstrated that doxorubicin containing PEG-PE micelles with size of 10-20nm 

resulted in a successful extravasation, accumulation, and penetration of the nanoparticle 

at the tumor site [178].  
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The increased accumulation and retention of nanoparticle at the tumor interstitium 

increases the success rate of the drug delivery system. For normal vasculature, 

macromolecules and cell debris are cleared from the interstitium through lymphatic 

drainage. However, lymphatics in tumors are either poorly developed or nonfunctional 

that leads to decreased rate of clearance of particles [179, 180]. As seen in Figure 4.7, 

statistical analysis (P>0.05, Kruskal-Wallis Test) shows that there was no significant 

difference amongst the total gold amount accumulated in tumor over time after a single 

tail-vein injection of gold nanoparticle system. This indicates that the retention of our Au-

DOX-PEG system within the tumor mass for prolonged period time for successful tumor 

therapy. Accumulation of Au-DOX-PEG in tumor was also evident by the color change 

of tumor mass itself as seen in Figure 4.6. Au-DOX-PEG displayed high accumulation in 

the tumors that they penetrated relatively long distance (radially) into the tumor (dark 

thick halo seen in the sliced open tumor mass picture of Figure 4.6 (a)), rather than being 

concentrated only near the vascular surface of short distance. Also, TEM Images from 

Figure 4.6 shows that gold nanoparticle are present in the extravascular compartment or 

the tumor interstitium, where concentration in this compartment represents the 

cumulative exposures of cancer cells to drug. It has been reported that when the particles 

are too small (molecular weight <40kDa), nanoparticles are rapidly cleared from the 

tumor extravascular compartment [23]. Thus, our Au-DOX-PEG system has the ideal 

size (5nm core with ~13nm shell) that resulted in successful vascular permeability and 

retention in the tumor interstitium.  
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(a) 

 
 
 

(b) 
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 (c) 

 

 
 

(d) 

 

Figure 4.6. Spatial Distribution of Au-DOX-PEG within Tumor (a) Collection of 
extracted tumor from Control, Doxorubicin, Au-DOX-PEG, and Au-PEG groups. Bottom 
picture indicates the halved Au-DOX-PEG tumor. (b) Brightfield and darkfield 
microscopy images of Au-DOX-PEG present within tumor (arrows and orange chunks 
indicates Au-DOX-PEG) (c) TEM images of Au-DOX-PEG inside the tumor cell (d) 
TEM images of Au-DOX-PEG outside the tumor cell  
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Finally, the successful therapeutic efficacy of our Au-DOX-PEG resulted from 

the cellular uptake of Au-DOX-PEG by cancer cells (with the assumption that 

doxorubicin is released inside the cancer cells after cellular uptake of Au-DOX-PEG). It 

has been reported that particles transport to the tissues by convection in healthy tissues 

[176]. However, due to lack of lymphatic drainage, the interstitial hydrostatic pressure 

increases to severely restrict convective transport [181, 182]. As a result, diffusion 

becomes the dominant means of transport of nanoparticles in tumor tissues. The rate of 

transport through the extracellular matrix is determined by the effective interstitial 

diffusion coefficient, which decreases as molecular weight is increased [183]. Thus, as 

high concentrations of Au-DOX-PEG was injected to the system, concentration gradient 

acts as a driving force to result in the uptake of gold nanoparticle system by cancer cells.  

Spatially, the TEM images in Figure 4.6 confirm that Au-DOX-PEG system is 

present both inside and outside of tumor cells. The uptake of Au-DOX-PEG by the tumor 

cells seems to be non-specific endocytosis, as they are usually found inside a vacuole or 

endosome-looking vesicles inside the cells. Within the cells, Au-DOX-PEG system is 

mostly present within the outer membrane of the endosome due to diffusion-limited, 

heavy gold core of Au-DOX-PEG system.  

Three mechanisms can be suggested for the successful therapeutic efficacy of our 

Au-DOX-PEG system: (1) most of the Au-DOX-PEG was accumulated in the tumor 

stroma and doxorubicin was released from the acidic tumor stroma to be uptaken by 

tumor cells or extracellular components (it has been reported that drug carriers larger than 

10kDa can localize near the vascular surface and release the drug from its carrier when it 

is near the vascular surface so that drug could penetrate much deeper into the tumor 
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tissue [23], (2) most of the Au-DOX-PEG was uptaken by the tumor cells by 

concentration gradient-driven diffusion process, where doxorubicin was released inside 

the tumor cells to exert its therapeutic efficacy, or (3) Au-DOX-PEG exerted its 

therapeutic efficacy by releasing doxorubicin both inside and outside the tumor cell (i.e. 

combination of both (1) and (2)). It is hard to conclude whether most of Au-DOX-PEG 

was inside or outside the tumor cell to exert therapeutic efficacy from Figure 4.6 TEM 

images. Kirpotin et al. reported that non-targeted (passive) colloidal gold encapsulating 

liposome drug delivery system were predominantly present within the tumor stroma, 

either in extracellular space or within tumor-resident macrophage but not within the 

tumor cells themselves, after 7 days of injection [184]. However, Kirpotin et al. used a 

larger nanoparticle of 86 nm in mean diameter for the experiment, whereas our Au-DOX-

PEG is 18 nm in mean diameter. Thus, small-size scale of Au-DOX-PEG resulted in 

uptake of our system by the cancer cells via passive targeting.   
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Figure 4.7. ICP-MS Analysis of Gold in Tumor After Single Injection   
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Additionally, PEGylation of our gold nanoparticle drug delivery system has 

affected the overall uptake of the Au-DOX-PEG. It has been reported that as the 

nanoparticles are transported within the tumor interstitium, nanoparticles can 

nonspecifically interact with various proteins and tissue compartments in the tumor 

interstitium or get metabolized [176]. PEGylation is known to render non-fouling 

surfaces that minimize nonspecific binding of proteins [169]. Also, PEGylation of our 

gold nanoparticle, along with attachment of modified doxorubicin, resulted in a near-

neutrally charged nanoparticle that decrease the binding of proteins and increased the 

uptake of Au-DOX-PEG by the tumor cells. 

In summary, the therapeutic efficacy of Au-DOX-PEG resulted from its “small-

size” and “near neutral charge” that led to effective transport of the nanoparticle across 

the tumor microenvironment and reaching the cancer cells at optimal concentrations. 

Moreover, it is the combination of the EPR effect (leaky tumor vasculature and decreased 

clearance rate due to defective lymphatic drainage) along with the concentration-driven, 

diffusion-limited transport of Au-DOX-PEG system that resulted in successful high 

accumulation of Au-DOX-PEG at the tumor site. We believe that acidic tumor 

environment and endosome trigger the release of the bound doxorubicin through cleavage 

of pH-sensitive hydrazone bond to result in therapeutic efficacy [176]. 

 
Biodistribution of Au-DOX-PEG in Various Organs and Toxicity 
 

To further understand the therapeutic efficacy of Au-DOX-PEG, biodistribution 

of Au-DOX-PEG in tumor and various organs were investigated through Inductive-

Coupled Plasma Mass Spectroscopy (ICP-MS) analysis of gold. We observed significant 

accumulation of Au-DOX-PEG in tumor compared to other normal organs (Figure 4.8 
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(a)). High accumulation of Au-DOX-PEG is due to the size scale and prolonged 

circulation of Au-DOX-PEG, taking advantage of the EPR effect. Nanoparticle plasma 

retention time is one of the primary driving forces for nanoparticle tumor accumulation 

by the EPR effect [22] that drug concentration in plasma must remain high for more than 

6 hours to satisfy the EPR effect in solid tumors [25, 36, 185]. For our Au-DOX-PEG 

system, PEGylation contributed to the prolonged blood circulation time of ~1.6 days 

compared to that of pure doxorubucin with few minutes. This prolonged circulation time 

promotes EPR effect and results in successful accumulation of Au-DOX-PEG at tumor 

site, where the small-sized Au-DOX-PEG easily extravasate out of the leaky tumor vessel 

to ultimately result in therapeutic efficacy.  

The key to a successful anti-tumor efficacy of a drug system relies on the 

accumulation and spatial distribution within the tumor. Especially for passive targeting, 

molecular weight (or size) and charge become the dominant factors that govern the 

accumulation of drug delivery system at the tumor site [23]. The accumulation of Au-

DOX-PEG at the tumor site was enhanced by the small molecular weight of the system 

(but greater than 40kDa to satisfy EPR condition [185]) that resulted in longer blood 

circulation half time of ~1.6 days. Moreover, the PEGylation of the small-sized gold 

nanoparticle core has enhanced the circulation time and minimized any non-specific 

binding by the serum proteins for RES clearance [169]. PEGylation also resulted in a 

slightly negative, near-neutrally charged Au-DOX-PEG system. It has been reported that 

anionic and neutral particles have prolonged blood circulation half-life [186]. In contrast 

to positively-charged particles, negatively-charged particles results in prolonged blood 

circulation half-life due to reduced interactions between tissue and cells [187]. Slightly 
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negative charge resulting from PEGylation was effective to give longer plasma half-life 

for Au-DOX-PEG, which ultimately led to higher accumulation at the tumor site.  

Additionally, it is the ultra-structural differences between the normal and tumor 

vasculature that resulted in a higher concentrations of Au-DOX-PEG system in tumor site 

compared to other organs. The permeability of normal vasculature decreases with the 

increasing hydrodynamic diameter of 3.6 nm, which is below the size limit of our system 

[188]. On the other hand, the permeability/ transport across the tumor vasculature is 

poorly regulated that tumor vasculature allows molecules up to 2 μm, which allows our 

Au-DOX-PEG system to easily extravasate and penetrate into the tumor interstitium [25, 

27, 189-191].  Thus, the leaky vasculature and the increased permeability of Au-DOX-

PEG within the tumor interstitium ultimately led to high accumulation of Au-DOX-PEG 

at the tumor site. Similar to the STEALTH liposomal drugs [192, 193], we believe that 

our Au-DOX-PEG initially accumulated at the tumor site via EPR effect over the course 

of few days (as indicated by the blood circulation half-life of ~1.6 days). Then, the drug 

is slowly released over the few weeks in a controlled manner (as seen in Figure 4.3), 

where the drug penetrates deeper into the tumor tissue due to creation of diffusion 

gradient.  

Here, we want to emphasize the fact that therapeutic efficacy of Au-DOX-PEG 

system resulted from “passive” transport of Au-DOX-PEG. Both active targeting and 

passive targeting require passage through the leaky tumor blood vessel and extravasate 

into the tumor interstitium or the perivascular region [176]. There has been a controversy 

where several works have shown that the use of tumor-targeting ligands does not increase 

the total accumulation of the nanoparticles in solid tumors [17, 184, 194, 195]. The 
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targeting-ligands rather increase the receptor-mediated internalization of the 

nanoparticles for improved therapeutic efficacy. According to Huang, X. et al, the 

targeted and non-targeted gold nanorods displayed “marginal” difference in terms of total 

gold accumulation in xenograft tumor models. However, targeted nanorods altered the 

intra- and extra-cellular distribution compared to non-targeted nanorods [17]. Moreover, 

targeting ligands shorten the blood circulation life through opsonization (adsorption of 

blood proteins) [196].  

It is interesting to see our passive targeting Au-DOX-PEG system resulted in a 

high accumulation at the tumor site to exert its therapeutic efficacy. As seen in Figure 4.8 

(a), the amount of gold accumulated per gram of organ at tumor was similar to that of 

spleen and greater than liver. In contrast, targeted nanorods (hydrodynamic diameters of 

51nm for nanorod and ~80nm for coated nanorod) resulted in fewer amounts of gold 

accumulated per gram of organ at tumor compared to spleen and liver [17]. Indeed, 

majority of gold was taken up by the liver and spleen (60-90% of the total injected gold) 

and less than 2% of the total injected gold was taken up by tumor for targeted nanorods. 

Similar trend was seen for TNF-α coated gold nanoparticle (hydrodynamic diameter of 

27nm with coating), where amount of gold accumulated per gram of organ at tumor site 

was significantly less than that of spleen and liver [197]. For our Au-DOX-PEG system, 

passive targeting resulted in 7.0% of the total single injected gold to be uptaken by the 

tumor itself. The high accumulation and uptake of Au-DOX-PEG is rendered from the 

size of our system (5nm core and 18nm for coated). However, we cannot exclude the fact 

that the higher doses used in this study may have altered the accumulation rate of Au-
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DOX-PEG at tumor site, which could have led to increased nonspecific uptake of our 

system by the cancer cells.  
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(e)  

 
 
 
 
Figure 4.8. Biodistribution of Au-DOX-PEG in Various Organs and Low Toxicity After 
2 weeks of Treatment (a) ICP-MS analysis of gold: the size resulted in high accumulation 
of Au-DOX-PEG at tumor site compared to other non-tumor sites (b) Au-DOX-PEG 
uptake in spleen and liver (c) Hematoxylin & Eosin staining of extracted organs after 
treatment  (d) TEM images of various organ after Au-DOX-PEG administration [Spleen: 
Red blood cells are seen (polychromatophillic). ; Liver: Dark spots are glycogen granules. 
Gold nanoparticles are mostly inside the blood vessel cells (outside the cell) and some are 
seen inside the liver cell near the nucleus. ; Kidney: Some are inside the blood vessel cell 
and others are inside some cell. ; Heart: Gold nanoparticles are inside an irregular-shaped 
cell in between the heart muscle fiber. Some gold nanoparticles are in the cavity/muscle 
lignin of the heart.; Lung: Gold nanoparticles are overall inside the blood vessel (outside 
the lung cell).] (e) Blood serum analysis [*=P<0.05; LDH=lactate dehydrogenase; ALT= 
alanin transaminase; AST= aspartate aminotransferase; Alk Phos= alkaline phohphatase]  

 

A successful drug delivery system not only exerts therapeutic efficacy but also 

reduces systemic toxicity when administered. Compared to pure doxorubicin, it is 
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important to note that Au-DOX-PEG system lacked any apparent toxicity in vital organs. 

Due to its small size, Au-DOX-PEG accumulated throughout the various organs, 

including tumor, in the system (Figure 4.8(a), (b)), consistent with the literature results. 

The smaller size and longer circulation time results in accumulation of Au-DOX-PEG at 

non-tumor sitesand concerns for toxicity at normal, healthy cells arises. However, as 

shown in Figure 4.8 (c), Au-DOX-PEG in spleen, liver, heart, kidney, and lung did not 

display any apparent toxicity compared to the Control (untreated) mice. Pure doxorubicin 

also did not display any apparent toxicity in the spleen and liver. However, pure 

doxorubicin treated mice displayed toxicity particularly in the heart, kidney, and lung. 

Edema, swelling of cells, was present in kidney for Doxorubicin group where nephric 

tubules exhibited swelling, along with congestion of renal glomeruli and narrowed 

Bowman’s space. For heart, interstitial edema was seen for Doxorubicin group that 

swelling was present for heart muscle fibers. For lungs, red blood cells were present 

within the alveoli sac space for Doxorubicin group, in contrast to clear alveoli sac space 

of the Control and Au-DOX-PEG groups.  

The inflammatory and oxidative response can be obtained by analyzing the blood 

serum. For example, when there is damage to the liver, there is an increased expression of 

certain immunological proteins in the blood that can be detected by serum analysis. 

Serum protein analysis results seen in Figure 4.8 (e) complements our toxicity results 

found in histological results. Serum proteins such as ALT, AST, and Alkaline 

phosphatase can be used to measure liver toxicity. Here, there were no significant 

differences amongst control (untreated), doxorubicin, Au-DOX-PEG, and Au-PEG 

groups for each ALT, AST, and Alkaline phosphatase level. This indicates minimal 
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toxicity to the liver, which is consistent with the histology results shown in Figure 4.8 (c). 

Similarly, kidney and heart toxicities seen in Doxorubicin group are further 

complemented with the serum protein profile results. Kidney toxicity can be measured 

through total bilirubicin, creatinine, and LDH levels, whereas heart toxicty can be 

measured via creatine kinase and LDH. Creatinine (~0.2 mg/dl) and total bilirubicin 

(~0.15 mg/dl) levels for all experimental groups were similar, but increased LDH level in 

Doxorubicin group suggests kidney toxicity in doxorubicin treated mice. Moreover, 

increased creatine kinase and LDH levels in Doxorubicin group also suggests 

cardiotoxicity in doxorubicin-treated mice, as evidenced in histology sections. 

We believe that the pharmacokinetics of the encapsulated doxorubicin influences 

the toxicity profile of such formulation of Au-DOX-PEG. It is the competition between 

the tumor accumulation rate and the drug release rate that it is preferable for the drug to 

be released after significant amount of drug carrier has accumulated at the tumor site to 

exert its therapeutic effect and minimize any side effects to normal, healthy cells.   

No apparent toxicity from Au-DOX-PEG system comes from change in 

pharmacokinetics and biodistribution of doxorubicin that was linked via pH-sensitive 

linker to gold nanoparticle. One hypothesis is that for our Au-DOX-PEG system, the 

slow, controlled release of the drug (Figure 4.3) resulted in no apparent toxicity in vital 

organs. If you manipulate the drug release rate, you can reduce the toxicity at healthy 

organs and not interfere with therapeutic activity of Au-DOX-PEG. Other hypothesis is 

that due to increased vascular permeability at the tumor site [193], Au-DOX-PEG 

accumulates more rapidly with higher concentration at the tumor site compared to non-

tumor sites. Indeed, as seen in the ICP-MS results from Figure 4.8 (a), majority of gold 
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was concentrated at the tumor. Less than 16% of total single injected gold went to spleen 

and liver, whereas less than 1.5% of the total single injected gold went to kidney, lung, 

and heart. Addition to the small amount of total gold accumulating in the vital organs, the 

ultra-structural differences between tumor and vital organs have resulted in no apparent 

toxicities at non-tumor sites. As mentioned earlier, increased permeability and retention 

effect at the tumor site resulted in a toxicity or therapeutic efficacy toward cancer cells 

for Au-DOX-PEG. Due to their leaky vasculatures, Au-DOX-PEG is easily extravasated 

to access cancer cells. In contrast, normal, healthy cells have tightly regulated blood 

vessels (smaller pore size cutoff of 2-6nm) that transport of nanoparticles are restricted 

and Au-DOX-PEG have less chance of accessing the healthy, normal cells [26]. 

Furthermore, combined with clearance of Au-DOX-PEG within the normal tissues due to 

functional lymphatic drainage (unlike tumor lymphatics) might have reduced the 

exposure of Au-DOX-PEG to the vital organs. Also seen in the TEM images (Figure 4.8 

(d)), most of the Au-DOX-PEG in vital organs are contained within the blood vessels or 

macrophages outside the cells, unlike the tumor. 

 Finally, there also has been a controversy for in vivo toxicity exerted by 

differently sized gold nanoparticles themselves. Indeed, it is hard to conclude what is the 

exact size of the gold nanoparticle to result in toxicity. Toxicity not only depends on the 

size of the nanoparticle but also depends on the surface-ligand chemistry, charge, shape, 

chemical composition of the particle itself, and the route of administration. The in vivo 

study done by Chen, Y et al. indicates no inherent toxicity exerted by the naked 5nm gold 

nanoparticles [198]. On the other hand, 13nm PEGlyated gold nanoparticle induced acute 

inflammation and toxicity to liver [199]. Similarly, Terentyuk G. et al. also reports 
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toxicity exerted by 15nm PEGylated gold nanoparticle in rabbit organs after intravenous 

injection [61]. They found that 15nm PEGylated gold nanoparticle resulted in 

hemodynamic disorders (congestion of the blood) in liver and spleen, along with 

thickening of kidney basal membrane. Niidome et al. have shown that the toxic potential 

is triggered by the surface modification of the gold nanoparticles. In fact, bromide-

stabilized gold nanorods induced severe cytotoxicity in HeLa cells, whereas PEG-

modified gold particles, which displayed a neutral surface, could only induce moderate 

toxicity [51]. Nevertheless, Connor et al. demonstrated that neither the surface 

characteristics nor the size of gold nanoparticles seemed to play a role in inducing 

cytotoxicity in the human leukemic cell line K562 [47]. Connor et al. stated that 4, 12, 

18nm gold nanoparticles with various surface modifiers were not inherently toxic to 

human cells, despite being taken up by the cells. Similarly, Shukla et al. found that 3.5nm 

gold nanoparticles lacked toxicity towards macrophages but reactive oxygen and nitride 

species were observed [48]. For extremely small-sized gold nanoparticles or gold clusters 

(less than 2nm in diameter), Pan et al. and Tsoli et al. stated that they are toxic to cells 

[45, 46]. As far as we are concerned, our 5nm core Au-DOX-PEG gold nanoparticle did 

not display any apparent toxicity to the vital organs when administered in high dosage via 

tail-vein. This is evident in the MTT assay, serum anlaysis, and histology results in 

Figure 4.4 and Figure 4.8.  

4.5 CONCLUSION 

We took a “tumor activated prodrug therapy” approach, where drug bound to the 

gold surface remains inactive until it reaches the acidic tumor site or intracellular 

environment, where change in pH triggers the release of doxorubicin via cleavage of 
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hydrazone bond.  We took doxorubicin as a model drug to test the feasibility of using 

small-sized 5nm gold nanoparticle for drug delivery applications. The water-soluble Au-

DOX-PEG resulted in similar toxicity to cancer cells as pure doxorubicin in vitro. 

However, when tested in vivo, high concentration of Au-DOX-PEG accumulated at the 

tumor site via EPR effect to result in therapeutic efficacy. Unlike the pure doxorubicin, 

Au-DOX-PEG did not result in any apparent toxicity to vital organs.  

The success of Au-DOX-PEG system resulted from (1) “high” accumulation at 

the tumor site compared to other non-tumor sites, (2) ideal spatial distribution and 

successful penetration at tumor site (i.e. Au-DOX-PEG were present both inside and 

outside the cancer cells), and (3) slow, controlled release of drug via pH-sensitive linker 

(i.e. state of the drug), all owing to the small size scale of the system. The small size of 

the system, along with PEGylation, gave prolonged blood circulation time to result in 

high accumulation of at the tumor site. Also, the small size scale allowed Au-DOX-PEG 

to easily extravasate into the tumor environment to result in therapeutic efficacy. The 

slow, controlled release of drug and high accumulation at the tumor site resulted in no 

apparent toxicity at vital organs, whereas pure doxorubicin displayed heart, kidney, and 

lung toxicity. Thus, our results demonstrated that functionalized 5nm gold nanoparticle-

based drug delivery system represents a highly attractive candidate as a potential drug 

delivery carrier for cancer nanotherapy. 

 103



www.manaraa.com

CHAPTER 5 

SIZE-DEPENDENT BIODISTRIBUTION AND CLEARANCE 

OF GOLD NANOPARTICLE  

 

5.1  ABSTRACT  

Here, we closely looked at the size-dependent biodistribution and clearance of 

both 5nm and 60nm gold nanoparticle systems. In addition to therapeutic efficacy of 

colloidal gold system, it is important to study the long-term clearance and the fate of the 

delivered colloidal gold system for in vivo applications. Compare to the short blood 

circulation half time (9 hours) for 60nm gold system, 5nm gold system resulted in a 

longer circulation half time (1.6 days). Larger 60nm gold nanoparticles were mostly 

uptaken in the liver and the spleen, whereas smaller sized 5nm gold nanoparticle was 

visible in the various organs in the system, especially resulting in pigmentation in the 

skin and the lymph nodes. Size dependent clearance was observed that 5nm gold system 

was excreted via renal and hepatobiliary pathways, whereas 60nm gold was mostly 

retained in the spleen and liver after 6 months. Thus, 5nm gold system is a potential 

candidate for biomedical applications, where 5nm gold core displays inherently different 

biodistribution and clearance characteristics than larger nanoparticles. 

5.2 INTRODUCTION 

The unique physico-chemical properties of nanoscale particles results in an 

increased reactivity with the biological systems that it renders different effects in the 

system compared to the larger, bulk materials. It is important to know the distribution and 

the effects of absorbed nanoparticle in various organs after an exposure. Moreover, it is 
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important for the particle to be delivered to the desired, targeted site, such as tumor for 

drug delivery applications, and “size” plays a critical role.  

Generally, when the system is injected with the nanoparticle, it is uptaken by the 

reticulo-endothelial System (RES) such as spleen or liver [200]. The surface modification 

of the nanoparticle can change the dynamics of nanoparticle circulation time that various 

coating techniques can be adopted to prolong the circulation time of the nanoparticle in 

the blood. In particular, coating the surface of the nanoparticle with hydrophilic polymer 

such as poly(ethylene glycol) or PEGylation can render “stealth” characteristics to the 

nanoparticles, thus resulting prolonged circulation time [169, 201]. Moreover, the 

circulation time of this the nanoparticle not only depends on the coating but also depends 

on the core size of the nanoparticle. Consequently, the circulation time of the 

nanoparticle will affect the distribution and efficacy of the nanoparticle within the 

system, especially for intravenously injected nanoparticles. 

Currently, several studies have been reported on the size-dependent 

biodistribution and clearance of gold nanoparticles. There is a correlation between size 

and biodistribution of nanoparticles. Generally, nanoparticles with size less than 10nm 

gets distributed throughout the system, whereas larger particles like ~60nm is mostly 

confined to the liver and spleen after intravenous injection [49].  Furthermore, in detailed 

studies on various nanoparticle size and its distribution confirm that majority of 

nanoparticles accumulated in the “liver” and “spleen” regardless of size (1.9nm~250nm), 

shape (sphere or rod), type (carbon nanotube, quantum dots, iron oxide, gold 

nanoparticle), and dose of exposure (0.01~2700 mg/kg) after intravenous injection [18, 

49-51, 53, 56, 57, 59-62, 199, 202-204]. Thus, if all the particles accumulate and 
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distribute in a similar manner despite of size, shape, and dose, then “clearance” plays a 

critical role that determines the success of the nanoparticle for in vivo applications.   

 
After delivering the therapeutic or imaging agent with a nanocarrier to the target 

site, it is desirable to see the delivery vehicle to clear out from the body, minimizing any 

harm to the healthy, normal cells. It has been reported that larger particles such as 20nm 

gold nanoparticle is minimally excreted through feces and urine that there is significant 

and persistent accumulation of gold nanoparticle in the liver and spleen through 

intravenous exposure [202]. Similarly, metal-based 13nm quantum dot showed 

accumulation in kidney but there was no urinary excretion up to 28 days after the 

injection in mice [63]. Also, 40nm gold nanoparticle was removed from the circulation 

primarily by Kupffer cells in the liver and remained as clusters even after six months 

[204]. In contrast, particles with less than ~6nm in diameter displayed clearance from the 

system. For example, 77% of the injected 1.9nm gold nanoparticle was rapidly cleared 

through the kidney and excreted 5 hours after the intravenous injection in the mouse [56]. 

Similarly, Choi et al showed rapid clearance of zwitterionic coated quantum dots (4.36-

5.52nm) through kidney and urinary excretion within 4 hours after the intravenous 

injection. Based on these findings, we believe that nanoparticle “size” plays a critical role 

for not only delivering the drug delivery system to the target site but also determining the 

in vivo behavior such as clearance and distribution of the nanoparticle throughout the 

body [64]. However, there is no golden standard for the optimal size to be used in cancer 

nanotechnology and it is still debatable.  

In this study, we look closely at the special properties inherent to 5nm gold 

nanoparticle, compared to the larger 60nm gold nanoparticle. It was found that 5nm gold 
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nanoparticle distributed throughout the system, slowly clearing out of the system with 

time via urine and feces. Furthermore, it was found that lymphatic system was involved 

in the clearance of 5nm gold nanoparticle. In contrast, the larger 60nm gold nanoparticle 

system steadily accumulated in the spleen and liver at a greater amount than the 5nm 

system over time and showed decreased clearance from the system in long term. Thus, 

we hypothesize that it is the “nano-size scale”, under the renal and urinary excretion 

threshold, of the polymer-gold system that is responsible for clearance of polymer-gold 

system over time. This study will provide insight on specific size of nanoparticle that 

could be applicable for other nanoparticle delivery systems.  

5.3  MATERIALS AND METHODS 

Materials 

Chemical Reagents  

Citrate-stabilized gold colloids, 5 nm and 60nm in size, were obtained from Ted 

Pella, Inc. (Redding, CA). Poly(ethylene glycol) (CH3O-PEG-SH) of molecular weight 

5000 was purchased from  Rapp Polymere (Germany). Mili-Q deionized water 

(Millipore, 18.2 MΩ cm-1) was used throughout the experiments.  All of the products 

were used without modification or purification unless as noted. 

Instrumentation  

Nanoparticle surface charge (zeta potential) and size were measured by ZetaSizer 

Nano-ZS90 (Malvern Instrument). Adsorption spectra were obtained through ultraviolet-

visible spectrophotometer (Beckman Coulter DU530). Gold content was analyzed by 

ICP-MS (HP 4500, Agilent Technologies).  TEM were taken by using Hitachi H7500 

high-magnification electron microscope.   
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Mouse Model  

5-6 weeks old CrTac: NCr-Foxn1nu male nude mice were obtained from a 

commercial vendor (Taconic).  The protocols were approved by the Institutional Animal 

Care and Use Committee (IACUC) of Emory University.  

Statistical Analysis 

Statistical analysis was performed using one-way ANOVA followed by multiple 

comparison Bonferroni’s test. Data were collected from at least three different animals 

and P<0.05 was considered statistically significant.  

PEGylation of colloidal gold 

Methoxy thiol-PEG (MW 5000) solution was added drop-wise to the colloidal 

gold solution. PEG solution was added accordingly to correspond to a complete coverage 

for PEG monolayer on gold particle surface. Simple geometric calculations showed that 

each thiol-PEG occupied a footprint area of 0.35 nm2 on the gold surface, consistent with 

the literature data reported for brush conformation of thiol-PEG. Excess of 10-20 fold 

PEG solution was added to the colloidal gold to ensure stability of gold colloids against 

aggregation under various in vivo conditions. The resulting 5nm and 60nm gold-PEG 

solutions were centrifuged to remove any unbound thiol-PEG. Then UV-vis 

spectrometer, DLS, and zeta potential were used to characterize the system. 

Blood, urine, and feces collection  

Blood was drawn from the cheeks of the mice at different time points (1, 5, 10, 30 

minutes; 1, 2, 4, 8, 20, 30 hours; 2, 3,4,5,6,7…25 days). Blood was weighed then further 

digested in nitric acid for ICP-MS analysis. Similarly, urine and feces were collected at 

different time points (30 minutes; 2.5, 4, 7.5 hours; 1,2,3,4….25 days). Note that urine 
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and feces were collected at specific time points and was not cumulative. Collected urine 

and feces were weighed then further digested in nitric acid for ICP-MS analysis.  

In vivo study of biodistribution and clearance 

Due to the nature of long term clearance and biodistribution study, non-tumor 

bearing nude mouse will be used with PEGylated 5nm and 60nm gold nanoparticles. 

Mice were divided (n=4) randomly into three groups of control, 5nm, and 60nm groups. 

Equal concentration of gold (0.04g/kg of body weight) was injected once for both 5nm 

and 60nm groups via tail vein. Mice were housed in sterile cages and any abnormal 

changes in body weight and behavior were observed every day. After the single injection, 

critical time points such as 1, 3, 10, 20, 35, 60, 90, and 180 day were chosen for 

harvesting organs (heart, kidney, liver, lung, brain, spleen, and skin) to quantify any gold 

concentration changes over time. Concurrently, pictures will be taken to document any 

skin and lymph node color changes over time. Presence of gold in various organs was 

verified by ICP-MS and TEM.  

5.4  RESULTS AND DISCUSSION 

PEGylation of Gold Nanoparticle and Blood Circulation Time 

 For biocompatibility and colloidal stability, 5nm and 60nm gold nanoparticles 

were coated with thiolated methoxy-PEG (MW 5000). The resulting gold nanoparticle 

had an average hydrodynamic size (diameter) of 18.2 ± 0.9 nm with a surface charge 

(zeta potential) of -5.04 ± 0.6 mV for 5nm gold nanoparticle system, whereas 60nm gold 

nanoparticle system had 78.5 ± 1.2 nm for average hydrodynamic diameter and -14.5 ± 

1.4 mV for zeta potential. The resulting gold nanoparticle was injected once through the 

mouse tail vein to study the pharmacokinetics and its behavior. 
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 After a single tail vein injection, blood samples were collected for 5nm gold 

nanoparticle system at various time points (between 0 and 25 days) from the mouse 

cheek, and ICP-MS was used to measure the gold concentration in blood. Using a simple 

mono-exponential decay model, the experimental data were fitted to result in a half decay 

time (t1/2) of ~1.6 days for the PEGylated gold nanoparticle. This is consistent with the 

previous literature reports where small-sized gold nanoparticles (1.4 nm and 15nm in 

diameter) resulted in high blood concentrations even after 24 hours after the intravenous 

injection [60, 205].  

 It has been reported that surface modification with long-chain PEG (with 

molecular weight of ≥2000 Da) significantly reduces protein adsorption on a surface 

[169], which in turn increases the circulation time of the nanoparticle in blood. The so-

called “non-fouling” or protein resistant surface is controlled by two principles of 1) 

terminal hydrophilicity of the head group combined with 2) formation of a dense but 

disordered PEG brush with significant penetration of water into the PEG layer [171]. As 

seen in the TEM image from Figure 5.1, it is this thick and high surface density of PEG 

layer on the gold surface that resulted in a long blood circulation time. It has been 

reported that smaller gold nanoparticle (10nm) resulted in a higher surface density of the 

adsorbed single-stranded DNA compared to the larger gold nanoparticle (50nm) by 13 

times [206]. Thus, it is the nature of the small 5nm gold nanoparticle core that resulted in 

dense “brush” configuration layer of PEG to minimize opsonization (adsorption of blood 

protein). Additionally, it is the non-targeted nature of the particle that resulted in a longer 

circulation time. It has been reported that targeted ligand exposed on the surface can 

accelerate the opsonization process [196, 207]. Finally, high concentration of small gold 

nanoparticle in the blood stream have possibly saturated the reticuloendothelial system 

(RES) and retarded the uptake by the RES. In comparison, larger gold nanoparticle of 

60nm core that has been PEGylated (MW 5000) resulted in a half decay time of 9 hours 

(not shown). Thus, our 5nm core gold nanoparticle system resulted in ~4 times increase 
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in half decay time compared to 60nm, having more advantage for the EPR effect for 

tumor accumulation.  

 

 

Figure 5.1. Blood Circulation Half Life of 5nm Gold Nanoparticle  (~1.6 days) 

 

Biodistribution of Gold Nanoparticle in Skin and Pigmentation 

Skin is the largest organ in the body. Here, skin is used as a semi-quantitative 

assessment measure that is related to the gold concentration inside the body. It was found 

that internal gold concentration was related to the degree of visible skin pigmentation. 

The skin pigmentation qualitatively measures and reflects the gold distribution and 

clearance within the system that has been injected with 5nm gold nanoparticle. 

The deposition of cutaneous gold occurred in the reticular and papillary dermis in 

the absence of inflammatory change. Most of the gold nanoparticles were confined in the 

dermal macrophage, inside a lysosome, in an aggregated form as seen Figure 5.2.  
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The following skin pigmentation was due to presence of 5nm gold nanoparticle 

and was not a melanin-induced pigmentation. The mice used for this experiment were 

derived from an albino mouse (i.e. lacking melanin pigmentation) and further 

examination of epidermis under TEM confirmed the absence of melanin granules in the 

mouse skin. Thus, this reversible skin pigmentation was solely due to injection of 5nm 

gold nanoparticle. We believe that reversible characteristic (i.e skin darkening then 

lightening) is due to the clearance of small-sized 5nm gold nanoparticle over time (as 

seen in next section). Interestingly, the skin pigmentation was also size dependent. When 

equal amount of gold concentration of 60nm gold nanoparticle was injected, no skin 

pigmentation was present in the 60nm gold injected mouse (Figure 5.2).  

For humans, it has been reported that high concentration of crystalline and 

amorphous gold “salt” (not nanoparticle) ingestion leads to an “irreversible” skin 

pigmentation called “chrysiasis”. Similar to the mouse skin pigmentation seen in our 

experiment, chrysiasis is characterized by the grayish-blue pigmentation of the skin but is 

“irreversible”.  Also, unlike our mouse skin pigmentation, chrysiasis skin pigmentation 

preferentially occurs in the areas of sun exposure, where metal deposits stimulate melanin 

production [208]. 

 To our knowledge, we are the first team to report the mouse skin pigmentation 

which qualitatively correlates to internal biodistribution and clearance of gold 

nanoparticle over time. Sonavane et al. reported that in vitro experiments revealed size-

dependent gold nanoparticle accumulation in rat skin [209]. Similar to our results, 

Sonavane et al. reported that compared to the larger size gold nanoparticles, small-sized 

gold nanoparticle (15nm) displayed higher permeation and accumulation in the dermis 
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and epidermis of the rat skin. Furthermore, Semmler-Behnke et al. briefly mentions high 

accumulation of 1.4 nm gold nanoparticle in the subcutaneous fatty tissue, which could 

not be explained. However, both papers mentioned gold nanoparticle accumulation in the 

skin, but not skin pigmentation [205]. 
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Figure 5.2. Gold Nanoparticle Induced Skin Pigmentation and Qualitative Monitoring of 
Distribution of 5nm versus 60nm Gold Nanoparticle (a) Skin Color Change versus Time 
Picture (in order of Control vs. 5nm vs. 60nm) (b) 6 month multi-view of Control vs. 
5nm vs. 60nm (c) TEM images of 5nm gold nanoparticle inside the skin around the head 
area for 3 day and 6 months (d) TEM images of 60nm gold nanoparticle inside the skin 
around the head area for 10 day and 6 months 

 

Despite same concentration of gold was injected for both 5nm and 60nm, the mouse 

injected with 60nm gold lack skin pigmentation due to its large size. As seen in Figure 

5.2, the TEM images reveal that only few number of particles actually reach the dermis 

of the skin. Due to its large size, 60nm is not readily diffused to the dermis like the small-
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sized 5nm gold. Moreover, for both 5nm and 60nm, gold nanoparticles were only visible 

within the dermis layer, which is in proximity to the blood vessel. Based on the 

observation via TEM, deeper layers of dermis (closer to blood vessel and muscle layer), 

you see more gold.  Gold nanoparticles were confined in an irregular-shaped cells, 

suspected to be a type of a macrophage, inside a lysosome.  

Also, gold distributes in different patterns within skin over time for 5nm gold 

nanoparticle system. At the beginning, the gold spreads out evenly throughout the body, 

giving an even pigmentation in the skin. Then as the gold gets cleared out from the body, 

gold tend to concentrate more around the head and the buttocks area, and the dark 

pigmentation line appeared on the sides of the mice. The ICP-MS data in Figure 5.3 was 

measured by taking three points in the body (head, torso, and buttocks), then averaged the 

ICP-MS values for each time point.  

Biodistribution of 5nm Gold Nanoparticle versus 60nm Gold Nanoparticle in 

Various Organs 

 There was a size-dependent biodistribution of gold nanoparticles within the 

system (Figure 5.3). In general, smaller 5nm gold system resulted in a wide spread of 

gold in various organs with total gold mass being liver > spleen> kidney> lung> heart, 

skin, lymph> brain at day 180. Although, the spleen exhibited higher capacities per gram 

of tissue (ng/g or ppb) for gold nanoparticle uptake, the liver took up the majority of the 

nanoparticle due to its larger mass. The amount of 5nm gold system in the liver did not 

decrease significantly until day 35. After day 35, significant amount of 5nm gold system 

was cleared out from the liver. The gold in the liver decreased from 263.66 ± 66.14 ng/g 

at day 35 to 142.43 ± 19.71 ng/g (P<0.05) at day 90 and further decreased to 53.39 ng/g 

at day 180 (n=1 for day 180). For spleen, significant decrease in gold was also observed 
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after day 35. The gold in the spleen decreased from 832.99 ± 138.57 ng/g at day 35 to 

509.43 ± 27.57 ng/g (P<0.05) at day 90 and further reduced to 291.8127 ng/g at day 180 

(n=1 for day 180). Interestingly, the amount of total gold in the lymph also decreased 

significantly after day 35 that gold decreased from 494 ± 33.91 ng/g at day 35 to 228.36 

± 25.2 ng/g at day 90 (P<0.05) and further reduced to 48.13 ng/g at day 180 (n=1 for day 

180). For heart, kidney, lung, and skin, there was more gradual decrease in gold over 

time. Small amount of 5nm gold system was detected in the brain but it was less than 

0.1% of the total injected dose. Approximately 44% of the total injected dose was 

uptaken by the liver and spleen at 3 day (36% in the liver and 8% in the spleen). After 

180 days, approximately 15% of the total injected gold was detected in the liver and the 

spleen (10% in liver and 5% in spleen). Thus, the long-tern study in a naïve, non-tumor 

bearing mice study indicated that the majority of 5nm gold system accumulated in the 

liver and spleen, and it gradually cleared out over time at day 180. Unlike the 60nm gold 

system, the unexpected bell-shaped biodistribution (Figure 5.3 (a) histogram for lymph, 

spleen, liver, and skin) of 5nm gold system would most likely resulted from the high 

concentration (0.04g Au/kg of body weight) of gold injected to the mouse. As reported by 

literature, high concentrations (0.85mg/kg of body weight) of small-sized 4nm gold were 

detected in the blood up to7 days and continuted to detect gold in the blood up to one 

month [210]. Similarly, our 5nm gold system resulted in a prolonged blood half-time (1.6 

days) that most likely the high concentrations of 5nm gold system did not get fully 

uptaken by the various organs up to ~35 days from circulation. The animals remained 

healthy for the entire duration of the study (up to 180 days) and no observable signs of 

weight loss, behavioral changes, and toxicity were detected.  
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Figure 5.3. Biodistribution of (a) 5nm versus (b) 60nm Gold Nanoparticles in Various 
Organs up to 180 days (dashline: P<0.05) 
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 60nm gold system also displayed similar biodistribution as 5nm gold system with 

highest uptake being the liver and the spleen.  Overall, unlike the 5nm gold system, 

majority of gold was present in the liver and the spleen and much less so in other 

evaluated organs. Initially, approximately 60% of the total injected gold was uptaken by 

the liver and spleen (40% liver and 19 % spleen) at day 3. After 180 days of initial 

injection, there was no observable change in the amount of gold in the spleen (~23% of 

total injected gold). However, there was a slight decrease in the amount of 60nm gold 

system in the liver that the total injected gold decreased to ~37% after 180 days. The 

slight decrease in the gold concentration in the liver suggests hepatobiliary clearance of 

gold in the liver over time. Similar trend was seen for other organs (i.e. lymph, kidney, 

skin, heart, and lung) that there were no significant changes in the gold concentration 

over the span of 6 months. Consistent with the literature results, no gold was found in the 

brain for 60nm (but for 5nm gold system), which reflects the tight restriction of blood 

brain barrier for the passage of nanoparticles. It has been reported that particles smaller 

than 20nm in diameter results in translocation of nanoparticle into the brain, whereas the 

passage of larger particles (>50nm) into the brain is restricted [49, 52].  

 Even though equal gold concentration was injected for both 5nm and 60nm gold 

systems, small-sized 5nm gold system exhibited less uptake by the liver and the spleen. 

Furthermore, less gold was retained for 5nm gold system after 180 days that there was a 

significant decreased in the gold concentrations in the liver and the spleen, whereas 60nm 

gold system displayed minimal decrease and increased retention of gold in the liver and 

the spleen. We believe that the size plays a critical role in the biodistribution and 

clearance of the nanoparticle over time.  
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Indeed, previous literature supports our size dependent biodistribution and 

clearance results. It has been reported that when four different sizes of gold nanoparticles 

(10, 50, 100, and 250nm) were intravenously injected in rats, 10nm gold nanoparticles 

were found in all organs evaluated (total gold amount highest in liver> blood> spleen> 

kidney> lungs> brain> testis> heart) whereas 50, 100, 250 nm gold nanoparticles were 

almost solely distributed to liver, spleen, and blood after 24 hour of injection [49]. 

Similarly, when 15, 50, 100, and 200 nm gold nanoparticles were injected intravenously 

in mice, smallest 15nm gold nanoparticle resulted in a wide spread of gold in liver, lung, 

kidney, spleen, brain, heart and blood; particles larger than 50nm were mostly confined to 

the liver, lung, kidney, and spleen after 24 hours [60]. Finally, the accumulation of 1.4-

nm gold nanoparticles in the liver and spleen was significantly lower compared to that of 

18-nm gold nanoparticles where twice as more total injected gold accumulated in the 

liver and spleen for 18nm gold nanoparticle [205]. Similar to our 5nm gold nanoparticles, 

smaller 1.4nm resulted in wide spread in the system where 1.4nm gold nanoparticles 

accumulated in liver, lung, spleen, kidney, brain, heart, and skin in rat. 

 
As seen with our 5nm versus 60nm gold system study, majority of gold was 

accumulated in the liver and the spleen.  Previous studies reports accumulation of gold in 

the liver and the spleen for long durations of time regardless of size, shape, dose, and 

types of materials. 10-20nm carbon nanotubes in mice resulted in 80% and 5% of total 

gold in the liver and the spleen, respectively, at a nearly constant level throughout 28 

days [211]. Single injection of 13nm quantum dot, coated with MW5000 methoxy PEG, 

resulted in accumulation in the liver (29-40% of the injected dose) and spleen (4.8-5.2% 

of injected dose) over 28 days [212]. Similarly, iron oxide (11 nm) injected in rats 
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resulted in 50 % and 25 % of injected dose in liver and spleen after 21 days [213]. When 

gold nanorods (65nm in length and 11 nm in width) were injected intravenously, 35 % of 

total gold accumulated in the liver and 2 % in spleen after 3 days [51]. Within 24hr, 

18nm gold nanoparticle AuNP was completely removed from the blood and 

predominantly present in the liver (93.9% of injected gold) then in spleen (2.2% injected 

gold) [205].  Injected gold nanoparticles of four sizes (10, 50, 100, and 250nm) in rats 

resulted in accumulation mainly in the liver (20-46% injected dose) an spleen (1.2-2.2% 

injected dose) after 24 hours [49]. When 12.5nm gold nanoparticle was injected everyday 

for 8 days intraperitoneally, gold nanoparticles accumulated in various organs (amount of 

gold/ gram of tissue being spleen> liver=kidney> lungs> brain) with liver having the 

highest total % of injected gold [214]. For long term studies like ours, Sadauskas, E. et al. 

reported that intravenously injected 40nm gold nanoparticle was removed from the 

circulation primarily by the Kupffer cells in the liver and remained as clusters even after 

6 months [58]. Study from a company called CytImmune also reported intravenous 

injection of 27nm gold nanoparticle coated with TNF-α and PEG in a tumor mouse 

model resulted in gold uptake by the liver and spleen (~35% of the total gold) at 120 days 

[197].  

 
The significant and persistent accumulation of gold nanoparticle in liver and 

spleen through intravenous exposure could be due to their fenestrated, discontinuous 

endothelia which allow nanoparticles up to 100 nm in diameter to exit from the 

bloodstream into the parenchyma. In addition, organs of the reticuloendothelial system 

(RES) including the liver and spleen can efficiently accumulate nanoparticles via 

opsonization that nanoparticles could bind to antibody in the plasma and are subsequently 
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recognized by the phagocyte-rich RES [215]. Also, higher uptake in the liver could be 

due to (1) larger organ size and (2) the momentary saturation of the uptake capacity of the 

spleen, which allows uptake in the liver when high concentrations of gold nanoparticles 

are introduced in a bolus intravenous injection. From various studies reported in the 

literature, several factors such as particle size, their surface charge, surface 

hydrophobicity, and the presence and/or absence of surface ligand are responsible for 

particle uptake by the RES [200]. 
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(b) 

        

Figure 5.4. TEM Images of (a) 5nm and (b) 60nm Gold Nanoparticles in Various Organs 
at 6 Months 
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 TEM images in Figure 5.4 show 5nm and 60nm gold nanoparticles present in 

small clusters in the various organs of liver, spleen, and kidney at 6 months. Most of the 

gold nanoparticles are contained in a membrane-bound vesicles inside irregularly-shaped 

(suspected to be macrophages) cells. The arrangement of nanoparticles in the sample 

indicated that the clusters were most likely agglomerates with weak binding forces. After 

intravenous administration, the gold nanoparticles may have been covered with various 

proteins present in the blood such as serum albumin and apolipoproteins that may 

facilitate the cellular uptake of the nanoparticle, as demonstrated for polymeric 

nanoparticles [216]. It has been observed that nanoparticles are rapidly uptaken, 

sequestered, and retained by the RES, mainly in the liver and spleen [200]. In the liver, 

the particles are mainly retained by the scavenging periportal and midzonal Kupffer cells, 

while hepatocytes and liver endothelial cells may play a secondary role under special 

pathophysiolgical conditions. It has been reported that Kupffer cells in the liver are 

mainly responsible for uptaking polymeric nanoparticles with hydrophobic surface. In the 

spleen, the marginal zone and red pulp macrophages are the major scavengers, while 

peritoneal macrophages and dendritic cells have a minor contribution.   

 

Clearance of Gold Nanoparticle 

Generally, renal and hepatobiliary systems are involved in the clearance of 

nanoparticles via urine and feces. Renal clearance or urinal pathway is more desirable 

that kidney is capable of rapidly removing the nanoparticles from the vascular 

compartment in an unaltered, original form [217]. There is minimal involvement of 

intracellular catabolism associated with the renal route that minimizes toxicity and agent 
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retention. In contrast, hepatobiliary system requires intracellular enzymatic modification. 

In hepatobiliary clearance, hepatocytes are directly related to bile excretion, and Kupffer 

cells are responsible for intracellular degradation of uptaken nanoparticles [217]. The 

uptake of hepatic system is quick, with the preferential uptake of particles in 10-20nm 

size range, but the hepatic clearance is a very slow process and most of the time 

nanoparticles result in prolonged retention in parenchyma itself [64, 217]. 

Various studies have been reported for clearance of nanoparticles. For 1.9nm gold 

nanoparticle, ~77% of the injected gold was excreted through kidney within 5hours in 

mice [56]. Choi et al. also reports rapid clearance of zwitterionic quantum dots (4.36nm-

5.52nm) within 4 hours of intravenous injection through kidney [64].  1.4nm gold 

nanoparticle were both excreted by kidney and hepatobiliary systems (8.6% injected gold 

in urine and 5% injected gold in feces), whereas 18nm gold nanoparticle resulted in 

relatively small hepatobiliary excretion (0.5% injected gold) and hardly any renal 

excretion in rats [205]. 13nm quantum dots displayed accumulation in kidney without 

any renal excretion [63] when 13 nm PEGylated gold nanoparticle accumulated in the 

liver and spleen without any hepatobiliary excretion up to 7 days [55]. Interestingly, 

larger 27nm PEGylated gold nanoparticles were significantly cleared out from the liver 

via hepatobiliary clearance after 4 months of intravenous injection in mouse [197]. Also, 

Balasubramanian et al. found that 20nm gold nanoparticle filtered from the bloodstream 

and excreted via urine (1.7ng/g at day 1 and 0.8 ng/g at 1 week) [52]. It is puzzling to see 

various sizes of nanoparticles get cleared out, especially via renal filtration, when the 

literature reports effective pore size of the filtration barrier (i.e. glomerular basement 

 127



www.manaraa.com

membrane (GBM)) and podocytes to be ~8nm in the kidney [218]. Thus, it is not only the 

size but also other factors like charge affects the clearance of nanoparticles. 

 
 As seen in Figure 5.5, our 5nm gold nanoparticle coated with MW 5000 thiolated 

methoxy- PEG (average hydrodynamic diameter of 18.2 ± 0.9 nm) resulted in both renal 

and hepatobiliary clearance. Since urine and feces were collected at the indicated, 

particular time point (i.e. not cumulative), we can not conclude how much of the total 

injected gold was excreted via urine or feces. However, it is clear that our 5nm gold 

system was significantly excreted via urine and feces up to 25 days. We believe that 5nm 

gold system was excreted rapidly via urine and feces at the initial time point (~ up to 9-10 

days) and rest of the 5nm gold system was excreted slowly as gold nanoparticle 

accumulates in the kidney, liver, and spleen.  It has been reported that PEGylation 

dramatically reduces particle renal filtration due to increased hydrodynamic diameter 

(HD). Cho et al. reported that PEGylation of 4nm gold nanoparticle (HD of 14.8 ± 3.3 

nm) resulted in hardly any renal and hepatic excretion [210]. In contrast to our results, 

they concluded that PEGylated 4 nm gold nanoparticle had a similar excretion profile as 

larger 13nm and 100nm PEGylated gold nanoparticles. Even though we are unclear of the 

exact mechanism at which allowed the passage of 5nm PEGylated gold nanoparticle 

through renal filtration, we believe that the successful excretion of 5nm PEGylated gold 

nanoparticle, particularly in renal system, was due to the surface charge (Cho et al. does 

not report the zeta potential or the MW of PEG used for their system) and perhaps 

coating replacement. It has been reported that filtration is greatest for cationic then 

neutral then anionic molecules being the least [217]. Molecular charge is of particular 

significance for molecules within 6-8nm range, as these particles are not small enough to 
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undergo charge-independent filtration, yet may still be filtered if molecular charge is 

favorable. The fact that our 5nm gold system is excreted, however, suggests that factors 

other than pore size may be important in the filtration of nanoparticle. The effective 

filtration pore diameter of 8nm applies to proteins with negative charges which are 

effectively repelled from the GBM barrier. The neutral or slightly negatively- charged 

5nm gold nanoparticle may not be so effectively repelled, and manage to pass through the 

barrier. It has been reported that hydrodynamic diameter greater than 15nm cannot be 

excreted renally [64]. Furthermore, unlike the hard 5nm core, the shell created by PEG is 

soft and flexible that might have changed its conformation, thus allowing the passage of 

gold system. PEG coating on the surface of the gold might have been replaced with other 

ligands in the serum (i.e. proteins) that could have led to alteration of shape, charge, and 

hydrodynamic diameter of our gold system. Finally, high concentrations of gold injected 

into the mice have resulted in excretion of gold via urine and feces, where high 

concentration gold resulted in the uptake capacity of the RES. The slight decrease in the 

rate of urine excretion in the later phase might suggest gradual accumulation of 

nanoparticles in the kidney over months might diminish the permeability of GBM and 

podocytes, further reducing the excretion of gold nanoparticles.  

 Hepatobiliary excretion of gold nanoparticles have been reported by Renaud et al. 

that colloidal gold taken up as a complex with low-density lipoprotein was excreted into 

the feces via the common bile duct at a maximal rate of about 5% daily, 4 to 12 days after 

injection [219]. Hardonk et al. also reports excretion of gold nanoparticles via 

hepatocytes at the earlier phase then via Kupffer cells at later phase [220]. For chrysiasis 

in humans, gold salt, concentrated particularly in the RES, are excreted in feces and urine 
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continuing for years after cessation of the therapy [208]. Excretion profile of 60nm gold 

nanoparticle was excluded, as previous literature reports hardly any excretion of larger 

particles via urine and minimal excretion via hepatic system [58, 210]. 
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Figure 5.5. Renal (a) and Hepatobiliary (b) Clearance of 5nm PEGylated Gold 
Nanoparticle [each time point represent urine or feces collected at that particular time 
point (i.e. not cumulative)] 
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  Previous research study states that given the same surface chemistry and similar 

chemical properties/composition of the gold core, the size governs the uptake by the 

lymph nodes [221]. This was consistent with our study where small-sized 5nm gold 

system was visible as dark brown circle in the extracted lymph nodes (Figure 5.6). 

Initially, dark brown circles were visible within the lymph nodes and as the time 

progressed, the pigmentation of the dark brown circle in the lymph node lightened up. 

This visible cue also corresponds to the ICP-MS analysis of lymph nodes (Figure 5.3 (a)) 

where concentration of gold decreased over time in the lymph nodes. Interestingly, larger 

60nm gold system did not display any pigmentation within the lymph node that it looked 

similar in hue compared to the Control lymph nodes. This is also evidenced in the TEM 

images of the lymph nodes (Figure 5.7) where only fewer number of particles were seen 

in the 60nm gold system images compared to 5nm gold system. We believe that large 

size of 60nm limited the lymphatic clearance of the gold system and resulted in decreased 

appearance in the lymph nodes. Also, TEM images demonstrate number of particles 

within the lymph nodes decreases over time for the 5nm gold system, whereas there 

seems to be an increase in the number of particles in the lymph nodes for 60nm gold 

system over time. Again, this is also consistent with the ICP-MS results in Figure 5.3 (b) 

where the concentration of 60nm gold system in the lymph nodes did not decrease over 

time in contrast to 5nm gold system. Accumulation of gold nanoparticle after intravenous 

injection has been reported in previous literature that high concentrations of 4, 13, and 

100 nm gold nanoparticles were detected in the mesenteric lymph nodes [210]. 
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(a)  

                                            

 (b) 

 

Figure 5.6. Lymphatic Clearance of Gold Nanoparticle (a) Schematic drawing of general 
lymph node locations (b) Pictures of extracted raw lymph nodes for Control versus 5nm 
versus 60nm gold nanoparticle [Mouse drawing modified from <http://www.informatics. 
jax.org/greenbook/figures/figure13-4.shtml>; D#=day#] 
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Detection of gold nanoparticles in the lymph nodes could be due to translocation 

of gold nanoparticles from the lungs. It has been reported that lymphatic drainage plays 

an important role in the uptake of particulates in the respiratory system [222, 223]. The 

findings indicate that lung could serve as a reservoir for nanoparticles after acute 

exposure, and there is significant translocation of nanoparticles out of the lungs through 

lymphatic vessels and/or the bloodstream to other organs with time. Balasubramanian et 

al. reported that gold nanoparticle concentration in the lungs increased dramatically after 

an injection then there was a continual decrease of nanoparticle in the lungs with time 

after an initial peak [52].  Thus, this could account for the higher accumulation of gold 

nanoparticles in the lymph nodes at earlier times. As the amount of gold in the lung 

decreases over time, the according gold nanoparticle being translocated from lung to 

lymph nodes also decrease over time. 

In a typical lymphatic clearance, molecules leak out of the blood vessels into the 

interstitial space and are cleared via the lymphatic system [224, 225]. Thus, small-sized 

5nm gold nanoparticles could have easily extravasated from the blood vessels and into 

the interstitial space to result in lymphatic clearance. Indeed, dark circles seen in the 

lymph node pictures (Figure 5.4) indicate high accumulation of extravasated 5nm gold 

nanoparticles. Compared to the 5nm, 60nm lymph nodes did not display any 

discoloration in the lymph nodes (Figure 5.4), even though same concentration of gold 

was injected for both 5nm and 60nm. This suggests that larger 60nm gold nanoparticle 

was unable to extravasate from the blood vessel as easily as the 5nm gold nanoparticles 

that less of them end up in the lymph node. Another reason for gold detection in the 
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lymph nodes could be accounted from general lymphatic clearance from the interstitial 

spaces of various organs, including the RES.  
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Figure 5.7. TEM Images of (a) 5nm Versus (b) 60nm Gold Nanoparticles in lymph nodes 
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5.5  CONCLUSION 

 Here, we showed the size-dependent biodistribution  and clearance of colloidal 

gold nanoparticles that (1) increased circulation time for 5nm gold system (due to size 

and PEG) resulted in biodistribution of gold in various organs compared to 60nm gold 

system, (2) larger 60nm gold nanoparticles were mostly uptaken in the liver and the 

spleen, whereas smaller sized 5nm gold nanoparticle was visible in the various organs in 

the system, especially resulting in pigmentation in the skin and the lymph nodes, and (3) 

size dependent clearance was observed where 5nm gold system gets cleared out via renal 

(urine) and hepatobiliary (feces) pathways, whereas 60nm gold was mostly retained in 

the spleen and liver after 6 months. Thus, 5nm gold system is a potential candidate for 

biomedical applications, where 5nm gold core displays inherently different 

biodistribution and clearance characteristics than 60nm or larger nanoparticles.  
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CHAPTER 6 

SUMMARY AND FUTURE DIRECTIONS 

 

6.1  ABSTRACT  

 In this chapter, we summarize the important findings from previous chapters and 

significance of our work in cancer nanotechnology. We then examine the future 

applications of gold nanoparticles in drug delivery applications, specifically focusing on 

the size and its impact on biological applications.  

6.2  SUMMARY 

 This dissertation focused on the design and development of various sizes of 

colloidal gold nanoparticle drug delivery systems for cancer nanotherapy. In particular, 

two representative sizes of gold nanoparticles, 5nm and 60nm, were investigated for the 

size effect on therapeutic efficacy, toxicity, and biodistribution in cancer nanotherapy. In 

the first chapter, we described the general background on cancer and emphasized the role 

of nanotechnology, particularly focusing on the size effect for successful detection, 

diagnosis, and treatment of cancer. The complexity and heterogeneity nature of cancer 

makes it difficult to successfully diagnose and treat cancer, and nanotechnology plays a 

critical role in overcoming the obstacles in cancer biology. It is the size-scale of 

nanotechnology that provides a powerful tool to easily manipulate the complex cancer 

environment by distinctively size-tuning the nanomaterial to interact with biological 

molecules in tumor. 

In the second chapter, we closely looked at one class of nanoparticles, namely 

colloidal gold nanoparticle, and its unique physical and chemical properties that are 

attractive for applications in cancer nanotechnology. Gold nanoparticles confer several 

advantages such as biocompatibility, size-tunability, and easy surface modification 

 138



www.manaraa.com

methods. Furthermore, due to its unique optical properties, multiple analytical chemistry 

methods such as UV-vis spectrophotometry, SERS, TEM, ICP-MS, darkfield 

microscopy, fluorescence can be used. Previously, gold nanoparticles have been mainly 

used for chemical sensing, photothermal therapy, and diagnostic purposes. The idea of 

using gold nanopartcle as a carrier for drug delivery is recent that further attention and 

study is required.  

In the third chapter, we start off our drug delivery study with larger 60nm 

colloidal gold nanoparticle system. Here, we report development and characterization of 

multifunctional drug delivery system for simultaneously treatment and SERS 

spectroscopic detection of tumor. Doxorubicin, serving a dual function of 

chemotherapeutic agent and SERS reporter molecule, was chemically conjugated to gold 

nanoparticle via pH-sensitive hydrazone linker then PEG was added to develop 

multifunctional delivery system. Doxorubicin occupied maximum of 20% of total surface 

area of gold nanoparticle to result in colloidal stability. The multifunctional delivery 

system demonstrated pH-dependent drug release profile, therapeutic effect on tumor 

cells, along with in vitro spectroscopic detection based on SERS. SERS spectra were 

detected for non-aggregated gold system at near-infrared wavelength. Thus, the 

development of multifunctional drug delivery system raises exciting opportunities for 

simultaneous spectroscopic detection and therapy for tumors.  

In the fourth chapter, we switched our focus to smaller-sized 5nm gold 

nanoparticle for drug delivery applications. Despite successful treatment and SERS 

spectroscopic detection in tumor, 60nm gold nanoparticle system resulted in a limitation 

of low drug-loading efficiency (0.1 wt-%). In order to test in vivo, our calculation results 
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showed that high concentration of gold nanoparticles were needed for 60nm gold 

nanoparticle system (calculation not shown). Thus, in order to increase the drug loading 

efficiency and minimize the amount of gold injected in vivo, 5nm gold nanoparticle was 

selected for the study. Similar to 60nm gold system, 5nm gold nanoparticles were coated 

with doxorubicin which was modified with pH-sensitive hydrazone linker. Then the 

resulting gold system was coated with PEG to give colloidal stability and 

biocompatibility. 5nm gold nanoparticle drug delivery system resulted in a higher drug 

loading efficiency of 5.5 wt-%. However, as a trade off for having a higher drug loading 

efficiency, 5nm gold system no longer displayed SERS like the 60nm gold system due to 

its size. When tested in a tumor mouse model, 5nm gold drug delivery system resulted in 

therapeutic efficacy against tumor with no apparent systemic toxicity. In contrast, pure 

doxorubicin resulted in kidney, heart, and lung toxicity, along with insignificant 

therapeutic efficacy compared to other groups tested. The success of 5nm gold system 

resulted from (1) “high” accumulation at the tumor site compared to other non-tumor 

sites via EPR effect, (2) ideal spatial distribution and successful penetration at tumor site, 

and (3) slow, controlled release of drug via pH-sensitive linker to result in no apparent 

systemic toxicity. All of these factors owe to the small size scale of our 5nm gold system.  

Finally, in the fifth chapter, we closely looked at the biodistribution and clearance 

of both 5nm and 60nm gold nanoparticle systems. In addition to therapeutic efficacy of 

colloidal gold system, it is important to study the long-term clearance and the fate of the 

delivered colloidal gold system for in vivo applications. Compare to the short blood 

circulation half time (~9 hours) for 60nm gold system, 5nm gold system resulted in a 

longer circulation half time (1.6 days) that led to size-dependent biodistribution of gold 
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nanoparticles. We showed that larger 60nm gold nanoparticles were mostly uptaken in 

the liver and the spleen, whereas smaller sized 5nm gold nanoparticle was visible in the 

various organs in the system, especially resulting in pigmentation in the skin and the 

lymph nodes. We also demonstrated size dependent clearance where 5nm gold system 

was excreted via urine and feces, whereas 60nm gold was mostly retained in the spleen 

and liver after 6 months. Thus, 5nm gold system is a potential candidate for drug delivery 

applications where 5nm gold core displays inherently different biodistribution and 

clearance characteristics than 60nm or larger nanoparticles.  

 In summary, we believe that nanoparticle “size” plays a critical role for not only 

delivering the drug delivery system to the target site but also determining the in vivo 

behavior such as clearance and biodistribution in the system.  

 

6.3  FUTURE DIRECTIONS 

 The work presented in this thesis mainly focuses on the two different systems to 

represent application of colloidal gold nanoparticle in cancer nanotherapy. While the drug 

delivery application and the in vivo fate of gold nanoparticles have been demonstrated 

conclusively, there is still a large amount of further developments needs to be made for 

optimization. In the following section, we suggest specific studies and future directions to 

be undertaken for futher improvement of our study.  

 

Improvement of Drug Loading Efficiency 
 

Maximum drug loading is desired for high therapeutic efficacy for drug delivery 

system. Currently, drug loading is limited to the “surface” of the gold nanoparticle, thus 

somewhat limiting the drug loading efficiency. Drug loading can be further enhanced by 

increasing the surface area for drug-hydrazone linker conjugation site by adopting a 
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different type of polymer coatings such dendrimers. Dendrimeric polymer provides 

multiple conjugation sites per polymer by branching characteristics. However, further 

study on toxicity of dendrimeric system, along with drug release profile has to be 

investigated.  

In this study, 60nm gold nanoparticle system had a low drug loading efficiency, 

thus limiting its use for in vivo applications. Also, as seen from the biodistribution and 

clearance studies, larger 60nm gold system was retained in the RES and was not cleared 

over time. Thus, the 60nm gold system could be more optimal for ex vivo diagnostic 

purposes in a long run. The SERS feature of 60nm gold system makes it an attractive 

candidate for cancer diagnostics where antibody-targeted 60nm gold nanoparticle with 

SERS tag could be used to capture cancer cells from the blood drawn from patients.  

 
Improvement of Therapeutic Efficacy 

Hydrazone bond is highly sensitive to pH changes that it is cleaved under mild 

acidic conditions of less than pH 5.5. The slow, delayed release of doxorubicin from gold 

nanoparticle-anticancer agent-PEG system is due to (1) the diffusion barrier created by 

PEG coating and (2) interactions between the polymer and the drug. To ensure rapid 

release of the bound drug, drug needs to be placed closer to the outer most layer of the 

system to decrease any diffusional barrier and accessibility of drug release triggering 

molecules. However, placing the drug near the outer most layer will limit the drug 

loading efficiency and change the property of the system compared to the current system. 

On the other hand, the PEG layer can be decreased to smaller size (or lower molecular 

weight) to minimize any diffusional barrior. However, decreasing the protective PEG 
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layer will compromise the colloidal stability of the gold nanoparticle. Alternatively, 

different linker system such as glutathione-activated prodrug system could be adopted. 

Alternatively, assuming that the drug loading percentage is fixed, doxorubicin 

(our model drug for the study) can be replaced with more potent drug to increase the 

therapeutic efficacy of the system. 

Finally, targeting ligand can be adopted to increase the therapeutic efficacy of the 

system. It has been reported that targeting ligands increase the internalization of drug 

carrier by the cancer cells at tumor site. This requires testing the optimal concentration of 

targeting ligands to be used, pharmacokinetics of the carrier, and toxicity exerted by the 

targeting ligand itself. 

Improvement of Biodistribution, Toxicity, and Clearance Studies  

 As seen with our studies, smaller-sized nanoparticles accumulate at various 

organs in the system.  Thus, wide and even spread of smaller-sized gold nanoparticle in 

the sytem requires further investigations in other parts (rather than focusing only on the 

vital organs) of the system. Also, to strenghthen the toxicity studies, changes in gene 

expressions in various organs can be studied, along with in depth serum protein analysis 

for organ toxicity.  

 Different sizes, rather than 5nm and 60nm, of gold nanoparticles needs to be 

tested for further generalization of the biodistribution and clearance of nanoparticles. 

Even smaller particles (like 2-3nm) and particles in between 5nm and 60nm can be used 

to study the different patterns in biodistribution and clearance. Additionally, different 

coating can be adopted to further strengthen the study. Different coatings on gold surface 

render different charge, shape, colloidal stability, and size. Thus, wide ranges of coatings 
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such as multidentate polymer can be tested. Furthermore, different dosages of gold 

system can be used to test the therapeutic efficacy, biodistribution, and clearance.  

 For clearance study, urine and feces needs to be collected cumulatively. Due to 

limited resources, our study was conducted by collecting urine and feces at each specific 

time point. By collecting urine and feces cumulatively, we can accurately calculate the 

amount excreted after the intravenous injection.  

 Finally, alternative methods other than ICP-MS can be used to further verify the 

gold quantification results. Analysis of collected organs, feces, urine, and blood through 

ICP-MS is an extremely costly and time-consuming process that it requires extensive 

drying and acid digestion of the samples. Other analytical chemistry methods such as 

atomic emission spectroscopy could be utilized. 

Future of Gold Nanoparticles in Drug Delivery Applications  

Nanotechnology plays a critical role in treatment of cancer. Currently, there are 

many ongoing clinical trials for various types of nanoparticles for cancer treatment. In 

particular, Doxil® and Abraxane® are one of few FDA approved nanoparticles for cancer 

therapy.  

Doxil®, PEGylated liposomal doxorubicin, is widely used to treat ovarian cancer 

or multiple myeloma [226].  Doxil® has been approved in the United States since 1995, 

and there are over 1219 clinical trials related to Doxil® alone [227, 228]. Doxil® is 

formulated by encapsulating anthracycline (i.e. doxorubicin hydrochloride) drug in 

liposomes with surface-bound methoxy-polyethylene glycol to result in mean size of 80-

90 nm and doxorubicin concentration of 2 mg/mL [229]. Due to its unique 

pharmacokinetic properties such as long circulation time (i.e. elimination half-life of 20-
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30 hours), restricted volume of distribution (i.e. close to blood volume), and stable 

retention of anthracycline inside the liposome during circulation, Doxil® has shown 6-

fold enhancement in antitumor activity compared to free doxorubicin with reduced 

cardiac toxicity [229]. However, Doxil® induces dose-limiting toxicities such as asthenia, 

fatigue, fever, anorexia, nausea, vomiting, stomatitis (i.e. painful sores in mouth), 

diarrhea, constipation, hand-foot syndrome, rash, neutropenia (i.e. low white blood cell 

count), thrombocytopenia, and anemia [230]. In particular, skin represents the major 

liposome accumulating site for long-circulating Doxil® that results in bothersome redness, 

flaking, swelling, and burning sensation on palms of hands or soles of feet.   

Abraxane® was also approved by FDA in 2005, which overcomes the limitations 

of paclitaxel by formulating albumin-bound form of paclitaxel with a mean particle size 

of ~130nm [231]. In general, paclitaxel is highly hydrophobic and conventionally 

delivered via Cremphor EL® and ethanol, which leads to hypersensitivity reactions, 

severe neuropoenia, and peripheral neuropathy in patients during therapy [232]. When 

injected, this 130nm albumin-paclitaxel complex quickly dissolves into smaller 

endogenous albumin-sized (~10nm) complexes for effective accumulation at tumor sites. 

Several clinical trials show that Abraxane® improves the solubility of paclitaxel and also 

improves the toxicity profile of conventional paclitaxel therapy with Cremphor EL® with 

greater anti-tumor activity [231]. A Phase III clinical trial with metastatic breast cancer 

patients resulted in higher response rate, significantly lower rate of grade 4 neutropenia, 

but higher rates of grade 3 sensory neuropathy [231].  

As seen above, despite advances made in toxic effects and therapeutic efficacy for 

cancer therapy, cancer patients still suffer from long-term adverse effects of the drug and 
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cancer mortality rate is still unacceptably high. Nanotechnology still faces challenges in 

the drug delivery area for further improvement and solutions to resolve these issues. To 

pinpoint, the biggest problems in current drug delivery are 1) presence of systemic 

toxicity imposed by nanoparticles due to changed pharmacokinetics and 2) drug 

stabilization and increased accumulation at target site for improved drug efficacy.  

New formulations introduced for particular chemotherapeutic agent can reduce or 

eliminate the toxicity native to that drug, but it can also introduce unexpected, new 

toxicities to the system. For example, prolonged circulation time of Doxil® resulted in a 

high accumulation of liposomes in the skin. Due to small size, pure doxorubicin gets 

cleared out from the system within few minutes. However, change in pharmacokinetics of 

the doxorubicin by increasing the delivery vehicle size and PEGylation allowed retention 

of the drug in the blood for longer periods of time and exposed other organs, such as skin, 

to result in toxicity. Longer circulation time does lead to increased accumulation of the 

drug at the target site, but at the same time there is a risk of exposing other, unrelated 

organs for potential toxicity.  

In addition to high accumulation of drug at the target site, efficacy of the drug is 

determined by the stability of drug during circulation and appropriate release/delivery of 

drug at the tumor site. In other words, drug needs to be stable during circulation and get 

properly released at the desired target site. For both Doxil® and Abraxane®, active drug is 

loosely bound, not covalently linked, to the delivery vehicle that there is a chance for 

leakage of parent drug during circulation. Leakage of drug not only reduces the efficacy 

of the drug delivery system but also increases the risk for potential toxicity in the system. 

Nanoparticle needs to be appropriately formulated so that drug is retained until it reaches 
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its target site, and gets released in a controlled manner. Thus, there should be a balance 

between systemic toxicity and efficacy of the drug to optimally treat the disease.    

Similarly, our gold nanoparticle drug delivery system also faced the same issues 

dealt above. Due to its stealth PEG layer and the size, our gold nanoparticle drug delivery 

system circulated in the blood for long period of time (~1.6 days), which led to wide 

distribution of the drug delivery system in non-tumor organs. Similar to Doxil®, we 

observed increased accumulation at the skin but no skin toxicity. Surprisingly, we 

observed non-toxic skin pigmentation, which faded with time. Unlike Doxil® and 

Abraxane®, our parent drug doxorubicin was covalently bound to the gold nanoparticle 

surface for stability during blood circulation. Due to smart, pH-activated drug release 

mechanism, delivery system was observed to release drug in acidic environment such as 

tumor stroma. Despite the accumulation at non-tumor sites, no apparent toxicity was 

observed for the given experimental period. Extremely high concentration of gold drug 

delivery system accumulation and retention at tumor site, relative to non-tumor site, 

outweighs the potential toxicity exerted on non-tumor sites. Furthermore, gold drug 

delivery system seems to be present mostly outside the cells in non-tumor sites. No 

apparent toxicity present in non-tumor site is mostly due to minimal or slow release of 

hydrazone-bound drug from the gold surface in non-acidic environment.  

Overall, our gold drug delivery system provided new insight on 5nm gold system 

that led to “increased” tumor accumulation due to changed pharmacokinetics (i.e. 

covalently bound doxorubicin was well-camouflaged or protected by PEG layer that 

stayed intact throughout the half-life circulation time of ~1.6 days) for “improved” 

therapeutic efficacy and overall “reduction” of side effects. Furthermore, small-sized gold 
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drug system was slowly “cleared” out from the body over time after cessation of 

treatment. We believe that 5nm gold drug delivery system is an ideal candidate for future 

drug delivery application only when intricate balance amongst nanoparticle formulation, 

dosage, dosing schedule, and nanoparticle pharmacokinetics are met, as seen in our study. 

Due to high surface-to-volume ratio, 5nm core allows increased drug loading efficiency. 

Furthermore, 5nm core is right below the renal clearance threshold and above 2nm, 

which has been reported to result in cellular toxicity. The only issue with 5nm drug 

delivery was skin pigmentation, which seems to be mostly cosmetic issue. This can be 

resolved by adopting different dosage, dosing schedule, or different types of potent drugs. 

Nanotechnology allows different delivery strategies in cancer therapy that balance 

between toxicity and efficacy of the drug system is crucial. Furthermore, combining 

effective dosing schedule for improved efficacy of the drug and safety profile is essential.  

Nanotechnology offers new opportunities for currently available chemotherapeutic agents 

by 1) increasing solubility of drug, 2) increasing maximum allowed dosage, 3) decreasing 

toxicity of the native drug (but not complete elimination of toxicity related to the original 

drug and sometimes occurrence of unexpected, new toxicity), 4) allowing various 

delivery strategies by various formulation methods (i.e. biodegradable materials, liquid-

to-gel transitioning material, thermal ablation, etc.), 5) allowing controlled release of the 

drug, 6) allowing different methods of metabolism to bypass certain metabolic pathway, 

and 7) allowing different methods of administration (i.e. intravenous, intraperitoneal, 

local tumor administration).  

Thus, future opportunities with gold nanoparticles in drug delivery, particularly 

with 5nm, are positive and limitless.  As an ideal drug delivery vehicle, gold nanoparticle 
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selectively delivers various kinds of drugs in a discrete quantity at specific time intervals, 

while minimizing systemic toxicity.  

6.4  CONCLUSION 

 In conclusion, it is the “size” that affects the behavior and fate of the nanoparticle 

in biological system. By choosing the appropriate size for the system, we were able to 

successfully demonstrate the use of gold nanoparticles in drug delivery applications, 

along with desirable clearance from the biological system. 

 This work is significant by providing an insight on a potential ideal candidate for 

gold nanoparticle-based drug delivery system that uses small (5nm) gold nanoparticle to 

study therapeutic efficacy on solid tumor and in vivo clearance and biodistribution. To 

our knowledge, we are the first team to investigate in detail for 5nm gold nanoparticle 

drug delivery system in vivo and its complete behavior for better understanding of the 

gold nanoparticle-based drug delivery. The findings from this study will have 

implications in the chemical design of nanostructures for biomedical applications.  
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APPENDIX A 

COLLOIDAL STABILITY OF PEGYLATED GOLD 

NANOPARTICLE  

 

 UV-vis spectroscopy can be used to characterize the coatings on the gold 

nanoparticle. For 5nm gold nanoparticle, it displays maximum absorption peak around 

514nm for raw, non-aggregated 5nm particle. To ensure that bound doxorubicin or PEG 

on gold surface does not affect the colloidal stability, absorption spectra were measured 

for gold-drug (Au-DOX) and gold-drug-PEG (Au-DOX-PEG) in water (Figure A.1). 

Furthermore, to prevent formation of aggregates in various biological mediums such as 

salt, PEGylated drug-gold nanoparticle (Au-DOX-PEG) was incubated in 0.5M salt 

solution (reflecting the biological salt concentration). As seen in Figure A.1, Au-DOX-

PEG was stable in salt solutions when tested up to 1 week, as indicated by smooth tail in 

the red wavelength region of the spectrum measured by UV-vis spectroscopy. In contrast, 

when raw 5nm gold nanoparticle was incubated in 0.5M salt solution, broadening of 

spectra was observed, along with the red shift in the maximum absorption peak. This 

indicates formation of aggregates of gold nanoparticles, as black precipitates were seen in 

the solution.  

 Additionally, when Au-DOX only was incubated in 10% serum solution (not 

shown here), dark precipitates (gold nanoparticle aggregates) were seen within few hours, 

whereas Au-DOX-PEG was stable (no precipitates seen) in 10% serum solution when 

observed up to 4 days at 37°C.        
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Figure A.1. Characterizaion of 5nm Gold Drug Delivery System (Au-DOX-PEG) with 
UV-vis Spectrometer (spectra were scaled for better visualization). 
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APPENDIX B 

DARKFIELD IMAGING OF COLLOIDAL GOLD 

NANOPARTICLES IN VARIOUS ORGANS AFTER TREATMENT  

 

 Due to its unique optical property, colloidal gold nanoparticles can be imaged via 

darkfield microscopy. After mouse was treated with Au-DOX-PEG, various organs were 

harvested and embedded in paraffin for thin sections. The images obtained in Figure B.1 

are unstained that orange dots spotted in various organs are solely from the deposited 

gold itself.  

 
 
 
 
 
(a)  
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(b) 

          
 
 
(c) 
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(d) 

          
 
 
(e) 

          
 
Figure B.1. Darkfield Imaging of Liver, Spleen, Kidney, Lung, and Heart after 16 Days 
of 5nm Gold Nanoparticle Drug Delivery System Au-DOX-PEG Treatment (red arrows 
indicate dark grey spots which represent gold deposited within the tissue) 
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